Search results

11 – 20 of over 1000
Article
Publication date: 31 July 2009

Lino Costa and Rui Vilar

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional…

4635

Abstract

Purpose

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional items from a wide range of common engineering materials, such as aluminum alloys, steels, titanium alloys, nickel superalloys and refractory materials.

Design/methodology/approach

The main R&D efforts and the major issues related to LPD are revisited.

Findings

During recent years, a worldwide series of R&D efforts have been undertaken to develop and explore the capabilities of LPD and to tap into the possible cost and time savings and many potential applications that this technology offers.

Originality/value

These R&D efforts have produced a wealth of knowledge, the main points of which are highlighted herein.

Details

Rapid Prototyping Journal, vol. 15 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Sanjay Kumar and Aleksander Czekanski

WC-Co is a well-known material for conventional tooling but is not yet commercially available for additive manufacturing. Processing it by selective laser sintering (SLS) will…

Abstract

Purpose

WC-Co is a well-known material for conventional tooling but is not yet commercially available for additive manufacturing. Processing it by selective laser sintering (SLS) will pave the way for its commercialization and adoption.

Design/methodology/approach

It is intended to optimize process parameters (laser power, hatch spacing, scan speed) by fabricating a bigger part (minimum size of 10 mm diameter and 5 mm height). Microstructural analysis, EDX and hardness testing is used to study effects of process parameters. Optimized parameter is ascertained after fabricating 49 samples in preliminary experiment, 27 samples in pre-final experiment and 9 samples in final experiment.

Findings

Higher laser power gives rise to cracks and depletion of cobalt while higher scan speed increases porosity. Higher hatch spacing is responsible for delamination and displacement of parts. Optimized parameters are 270 W laser power, 500 mm/s scan speed, 0.04 mm layer thickness, 0.04 mm hatch spacing (resulting in energy density of 216 J/mm3) and 200°C powder bed temperature. A part comprising of small hole of 2 mm diameter, thin cylindrical pin of 0.5 mm diameter and thin wall of 2 mm width bent up to 30° angle to the base plate is fabricated. In order to calculate laser energy density, a new equation is introduced which takes into account both beam diameter and hatch spacing unlike old equation does. In order to calculate laser energy density, a new equation is formulated which takes into account both beam diameter and hatch spacing unlike old equation does. WC was not completely melted as intended giving rise to partial melting-type binding mechanism. This justified the name SLS for process in place of SLM (Selective Laser Melting).

Research limitations/implications

Using all possible combination of parameters plus heating the part bed to maximum shows limitation of state-of-the-art commercial powder bed fusion machine for shaping hardmetal consisting of high amount of WC (83 wt. per cent).

Practical implications

The research shows that microfeatures could be fabricated using WC-Co which will herald renewed interest in investigating hardmetals using SLS for manufacturing complex hard tools, molds and wear-resistance parts.

Originality/value

This is the first time micro features are successfully fabricated using WC-Co without post-processing (infiltration, machining) and without the help of additional binding material (such as Cu, Ni, Fe).

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1704

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 January 2018

Dmytro Svyetlichnyy, Michal Krzyzanowski, Robert Straka, Lukasz Lach and W. Mark Rainforth

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study…

Abstract

Purpose

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study the interaction of different physical mechanisms in laser-assisted additive layer manufacturing (ALM) of orthopaedic implants. Several physical events occurring in sequence or simultaneously are considered in the holistic model. They include a powder bed deposition, laser energy absorption and heating of the powder bed by the moving laser beam, leading to powder melting or sintering, fluid flow in the melted pool and flow through partly or not melted material, and solidification. The purpose of this study is to develop a structure of the holistic numerical model based on CA and LBM applicable for studying the interaction of the different physical mechanisms in ALM of orthopaedic implants. The model supposed to be compatible with the earlier developed CA-based model for the generation of the powder bed.

Design/methodology/approach

The mentioned physical events are accompanied by heat transfer in solid and liquid phases including interface heat transfer at the boundaries. The sintering/melting model is being developed using LBM as an independent numerical method for hydrodynamic simulations originated from lattice gas cellular automata. It is going to be coupled with the CA-based model of powder bed generation.

Findings

The entire laser-assisted ALM process has been analysed and divided on several stages considering the relevant physical phenomena. The entire holistic model consisting of four interrelated submodels has currently been developed to a different extent. The submodels include the CA-based model of powder bed generation, the LBM-CA-based model of heat exchange and transfer, the thermal solid-liquid interface model and the mechanical solid-liquid interface model for continuous liquid flow.

Practical implications

The results obtained can be used to explain the interaction of the different physical mechanisms in ALM, which is an intensively developing field of advanced manufacturing of metal, non-metal and composite structural parts, for instance, in bio-engineering. The proposed holistic model is considered to be a part of the integrated modelling approach being developed as a numerical tool for investigation of the co-operative relationships between multiphysical phenomena occurring in sequence or simultaneously during heating of the powder bed by the moving high energy heat source, leading to selective powder sintering or melting, fluid flow in the melted pool and through partly (or not) melted material, as well as solidification. The model is compatible with the earlier developed CA-based model for the generation of the powder bed, allowing for decrease in the numerical noise.

Originality/value

The present results are original and new for the study of the complex relationships between multiphysical phenomena occurring during ALM process based on selective laser sintering or melting, including fluid flow and heat transfer, identified as crucial for obtaining the desirable properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2021

Kashif Ishfaq, Mudassar Rehman, Ahmed Raza Khan and Yanen Wang

Human aging is becoming a common issue these days as it results in orthopaedic-related issues such as joints disorderness, bone-fracture. People with age = 60 years suffer more…

Abstract

Purpose

Human aging is becoming a common issue these days as it results in orthopaedic-related issues such as joints disorderness, bone-fracture. People with age = 60 years suffer more from these aforesaid issues. It is expected that these issues in human beings will ultimately reach 2.1 billion by 2050 worldwide. Furthermore, the increase in traffic accidents in young people throughout the world has significantly emerged the need for artificial implants. Their implantation can act as a substitute for fractured bones or disordered joints. Therefore, this study aims to focus on electron beam melted titanium (Ti)-based orthopaedic implants along with their recent trends in the field.

Design/methodology/approach

The main contents of this work include the basic theme and background of the metal-based additive manufacturing, different implant materials specifically Ti alloys and their classification based on crystallographic transus temperature (including α, metastable β, β and α + β phases), details of electron beam melting (EBM) concerning its process physics, various control variables and performance characteristics of EBMed Ti alloys in orthopaedic and orthodontic implants, applications of EBMed Ti alloys in various load-bearing implants, different challenges associated with the EBMed Ti-based implants along with their possible solutions. Recent trends and shortfalls have also been described at the end.

Findings

EBM is getting significant attention in medical implants because of its minor issues as compared to conventional fabrication practices such as Ti casting and possesses a significant research potential to fabricate various medical implants. The elastic modulus and strength of EBMed ß Ti-alloys such as 24Nb-4Zr-8Sn and Ti-33Nb-4Sn are superior compared to conventional Ti for orthopaedic implants. Beta Ti alloys processed by EBM have near bone elastic modulus (approximately 35–50 GPa) along with improved tribo-mechanical performance involving mechanical strength, wear and corrosion resistance, along with biocompatibility for implants.

Originality/value

Advances in EBM have opened the gateway Ti alloys in the biomedical field explicitly ß-alloys because of their unique biocompatibility, bioactivity along with improved tribo-mechanical performance. Less significant work is available on the EBM of Ti alloys in orthopaedic and orthodontic implants. This study is directed solely on the EBM of medical Ti alloys in medical sectors to explore their different aspects for future research opportunities.

Article
Publication date: 15 February 2021

Lan Li, Tan Pan, Xinchang Zhang, Yitao Chen, Wenyuan Cui, Lei Yan and Frank Liou

During the powder bed fusion process, thermal distortion is one big problem owing to the thermal stress caused by the high cooling rate and temperature gradient. For the purpose…

Abstract

Purpose

During the powder bed fusion process, thermal distortion is one big problem owing to the thermal stress caused by the high cooling rate and temperature gradient. For the purpose of avoiding distortion caused by internal residual stresses, support structures are used in most selective laser melting (SLM) process especially for cantilever beams because they can assist the heat dissipation. Support structures can also help to hold the work piece in its place and reduce volume of the printing materials. The mitigation of high thermal gradients during the manufacturing process helps to reduce thermal distortion and thus alleviate cracking, curling, delamination and shrinkage. Therefore, this paper aims to study the displacement and residual stress evolution of SLMed parts.

Design/methodology/approach

The objective of this study was to examine and compare the distortion and residual stress properties of two cantilever structures, using both numerical and experimental methods. The part-scale finite element analysis modeling technique was applied to numerically analyze the overhang distortions, using the layer-by-layer model for predicting a part scale model. The validation experiments of these two samples were built in a SLM platform. Then average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model.

Findings

The validation experiments results of average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model. It was found that they matched well with each other. From displacement and residual stress standpoint, by introducing two different support structure, two samples with the same cantilever beam can be successfully printed. In terms of reducing wasted support materials, print time and high surface quality, sample with less support will need less post-processing and waste energy.

Originality/value

Numerical modeling in this work can be a very useful tool to parametrically study the feasibility of support structures of SLM parts in terms of residual stresses and deformations. It has the capability for fast prediction in the SLMed parts.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2006

K. Abdel Ghany and S.F. Moustafa

To compare the capabilities and product quality of four state‐of‐the‐art metal rapid prototyping and manufacturing (RPM) systems. This comparison could help industrial companies…

1921

Abstract

Purpose

To compare the capabilities and product quality of four state‐of‐the‐art metal rapid prototyping and manufacturing (RPM) systems. This comparison could help industrial companies to know the advantages and disadvantages of each system and decide which system is the most appropriate for their application field.

Design/methodology/approach

This work evaluates and compares the quality of four identical benchmarks fabricated from different metallic powders by using four recently developed RPM systems for metals. The evaluation considers benchmark geometry, dimensional precision, material type, product strength and hardness, surface quality, building speed, materials, operation and running cost.

Findings

Results show that using RPM technology for the production of metallic products proved to be successful and promising technology to fabricate high strength products such as dies and molds parts which have complicated geometry and fine features. The best quality and strength was developed by the technique of complete melting of metallic powders (selective laser melting/micro‐welding). Comparing to the technique of selective laser sintering, this gave the impression to be more successful and reliable in future in addition to the ability to prototype different types of metallic powders. However, it was very slow and costly. Results by other techniques were evaluated as well.

Research limitations/implications

The discussed resulted were based only on one benchmark built by each evaluated system and using only one set of processing parameters (which were recommended by the machine manufacturer to be the optimum parameters). However, different results could be obtained if different processing parameters were used. Future work should include the affect of changing the process parameters for each system.

Practical implications

A very useful research study for industrial organizations need to use RPM for the production of metallic products.

Originality/value

This paper provides very important comparison between different state‐of‐the‐art metal RPM systems that are very new to the market. This paper should be very valuable to industrial organizations industrial organizations need to use RPM for the production of metallic products.

Details

Rapid Prototyping Journal, vol. 12 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 February 2020

Jin Wang, Yi Wang and Jing Shi

Selective laser melting (SLM) is a major additive manufacturing (AM) process in which laser beams are used as the heat source to melt and deposit metals in a layerwise fashion to…

Abstract

Purpose

Selective laser melting (SLM) is a major additive manufacturing (AM) process in which laser beams are used as the heat source to melt and deposit metals in a layerwise fashion to enable the construction of components of arbitrary complexity. The purpose of this paper is to develop a framework for accurate and fast prediction of the temperature distribution during the SLM process.

Design/methodology/approach

A fast computation tool is proposed for thermal analysis of the SLM process. It is based on the finite volume method (FVM) and the quiet element method to allow the development of customized functionalities at the source level. The results obtained from the proposed FVM approach are compared against those obtained from the finite element method (FEM) using a well-established commercial software, in terms of accuracy and efficiency.

Findings

The results show that for simulating the SLM deposition of a cubic block with 81,000, 189,000 and 297,000 cells, the computation takes about 767, 3,041 and 7,054 min, respectively, with the FEM approach; while 174, 679 and 1,630 min with the FVM code. This represents a speedup of around 4.4x. Meanwhile, the average temperature difference between the two is below 6%, indicating good agreement between them.

Originality/value

The thermal field for the multi-track and multi-layer SLM process is for the first time computed by the FVM approach. This pioneering work on comparing FVM and FEM for SLM applications implies that a fast and simple computing tool for thermal analysis of the SLM process is within the reach, and it delivers comparable accuracy with significantly higher computational efficiency. The research results lay the foundation for a potentially cost-effective tool for investigating the fundamental microstructure evolution, and also optimizing the process parameters in the SLM process.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 October 2018

Thiemo Valentin Fieger, Maximilian Ferdinand Sattler and Gerd Witt

This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding.

Abstract

Purpose

This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding.

Design/methodology/approach

A novel approach for substituting conventional cold rolled metal sheets with SLM metal sheets, made of 316L and 18-Ni 300, is presented. The characteristics of the interaction of wrought and SLM materials are described, and joining benchmark parameters are presented and compared to known existing joining results. Finally, the joints are assessed in line with automotive specifications. This research also addresses the importance of joining technologies for the implementation of SLM as a full-fledged manufacturing technology for the automotive industry.

Findings

New parameter ranges for laser beam welding of SLM steels are defined.

Research limitations/implications

This research is limited to the examined steels and the used machines, parameters and equipment.

Practical implications

The presented benchmark parameters are expected to be useful for designers, product developers and machine operators.

Originality/value

Little knowledge is available about the behavior of SLM materials and their suitability for assembly processes. Novel information about SLM steels and their interaction with conventionally produced steel sheets is presented.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 September 2021

Yaasin Abraham Mayi, Alexis Queva, Morgan Dal, Gildas Guillemot, Charlotte Metton, Clara Moriconi, Patrice Peyre and Michel Bellet

During thermal laser processes, heat transfer and fluid flow in the melt pool are primary driven by complex physical phenomena that take place at liquid/vapor interface. Hence…

539

Abstract

Purpose

During thermal laser processes, heat transfer and fluid flow in the melt pool are primary driven by complex physical phenomena that take place at liquid/vapor interface. Hence, the choice and setting of front description methods must be done carefully. Therefore, the purpose of this paper is to investigate to what extent front description methods may bias physical representativeness of numerical models of laser powder bed fusion (LPBF) process at melt pool scale.

Design/methodology/approach

Two multiphysical LPBF models are confronted: a Level-Set (LS) front capturing model based on a C++ code and a front tracking model, developed with COMSOL Multiphysics® and based on Arbitrary Lagrangian–Eulerian (ALE) method. To do so, two minimal test cases of increasing complexity are defined. They are simplified to the largest degree, but they integrate multiphysics phenomena that are still relevant to LPBF process.

Findings

LS and ALE methods provide very similar descriptions of thermo-hydrodynamic phenomena that occur during LPBF, providing LS interface thickness is correctly calibrated and laser heat source is implemented with a modified continuum surface force formulation. With these calibrations, thermal predictions are identical. However, the velocity field in the LS model is systematically underestimated compared to the ALE approach, but the consequences on the predicted melt pool dimensions are minor.

Originality/value

This study fulfils the need for comprehensive methodology bases for modeling and calibrating multiphysical models of LPBF at melt pool scale. This paper also provides with reference data that may be used by any researcher willing to verify their own numerical method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

11 – 20 of over 1000