Search results

1 – 4 of 4
Article
Publication date: 7 September 2015

Mariam Alnuaimi, Khaled Shuaib, Klaithem Alnuaimi and Mohammed Abed-Hafez

This paper aims to propose a new node energy-efficient algorithm with energy threshold to replace cluster heads. The proposed algorithm uses node ranking to elect cluster heads…

Abstract

Purpose

This paper aims to propose a new node energy-efficient algorithm with energy threshold to replace cluster heads. The proposed algorithm uses node ranking to elect cluster heads based on energy levels and positions of the nodes in reference to the base station (BS) used as a sink for gathered information. Because the BS calculates the number of rounds a cluster head can remain for as a cluster head in advance, this reduces the amount of energy wasted on replacing cluster heads each round which is the case in most existing algorithms, thus prolonging the network lifetime. In addition, a hybrid redundant nodes duty cycle is used for nodes to take turn in covering the monitored area is shown to improve the performance further.

Design/methodology/approach

Authors designed and implemented the proposed algorithm in MATLAB. The performance of the proposed algorithm was compared to other well-known algorithms using different evaluation metrics. The performance of the proposed algorithm was enhanced over existing ones by incorporating different mechanisms such as the use of an energy-based threshold value to replace CHs and the use of a hybrid duty-cycle on nodes.

Findings

Through simulation, the authors showed how the proposed algorithm outperformed PEGASIS by 15 per cent and LEACH by almost 70 per cent for the network life-time criterion. They found that using a fixed pre-defined energy threshold to replace CHs improved the network lifetime by almost 15 per cent. They also found that the network lifetime can be further improved by almost 7 per cent when incorporating a variable energy threshold instead of a fixed value. In addition to that, using hybrid-redundant nodes duty-cycle has improved the network lifetime by an additional 8 per cent.

Originality/value

The authors proposed an energy-efficient clustering algorithm for WSNs using node ranking in electing CHs and energy threshold to replace CHs instead of being replaced every round.

Details

International Journal of Pervasive Computing and Communications, vol. 11 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 29 July 2014

Chongli Di, Xiaohua Yang, Xuejun Zhang, Jun He and Ying Mei

The purpose of this paper is to simulate and analyze accurately the multi-scale characteristics, variation periods and trends of the annual streamflow series in the Haihe River…

Abstract

Purpose

The purpose of this paper is to simulate and analyze accurately the multi-scale characteristics, variation periods and trends of the annual streamflow series in the Haihe River Basin (HRB) using the Hilbert-Huang Transform (HHT).

Design/methodology/approach

The Empirical Mode Decomposition (EMD) approach is adopted to decompose the original signal into intrinsic mode functions (IMFs) in multi-scales. The Hilbert spectrum is applied to each IMF component and the localized time-frequency-energy distribution. The monotonic residues obtained by EMD can be treated as the trend of the original sequence.

Findings

The authors apply HHT to 14 hydrological stations in the HRB. The annual streamflow series are decomposed into four IMFs and a residual component, which exhibits the multi-scale characteristics. After the Hilbert transform, the instantaneous frequency, center frequency and mean period of the IMFs are obtained. Common multi-scale periods of the 14 series exist, e.g. 3.3a, 4∼7a, 8∼10a, 11-14a, 24∼25a and 43∼45a. The residues indicate that the annual streamflow series has exhibited a decreasing trend over the past 50 years.

Research limitations/implications

The HHT method is still in its early stages of application in hydrology and needs to be further tested.

Practical implications

It is helpful for the study of the complex features of streamflow.

Social implications

This paper will contribute to the sustainable utilization of water resources.

Originality/value

This study represents the first use of the HHT method to analyze the multi-scale characteristics of the streamflow series in the HRB. This paper provides an important theoretical support for water resources management.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 October 2018

Hesam Bakhshi, Erfan Khodabandeh, Omidali Akbari, Davood Toghraie, Mohammad Joshaghani and Alireza Rahbari

In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect…

Abstract

Purpose

In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect of changes in geometric parameters, including internal and external dimensions on the behavior of heat transfer and fluid flow. For each parameter, an optimum ratio will be presented.

Design/methodology/approach

The results showed that in a channel cell, changing any geometric parameter may affect the temperature and flow field, even though the volume of the channel is kept constant. For a relatively small hydraulic diameter, microchannels with different angles have a similar dimensionless heat flux, while channels with bigger dimensions show various values of dimensionless heat flux. By increasing the angles of trapezoidal microchannels, dimensionless heat flux per unit of volume increases. As a result, the maximum and minimum heat transfer rate occurs in a trapezoidal microchannel with 75° and 30 internal’s, respectively. In the study of dimensionless heat flux rate with hydraulic diameter variations, an optimum hydraulic diameter (Dh) was observed in which the heat transfer rate per unit volume attains maximum value.

Findings

This optimum state is predicted to happen at a side angle of 75° and hydraulic diameter of 290 µm. In addition, in trapezoidal microchannel with higher aspect ratio, dimensionless heat flux rate is lower. Changing side angles of the channels and pressure drop have the same effect on pressure drop. For a constant pressure drop, if changing the side angles causes an increase in the rectangular area of the channel cross-section and the effect of the sides are not felt by the fluid, then the dimensionless heat flux will increase. By increasing the internal aspect ratio (t_2/t_3), the amount of t_3 decreases, and consequently, the conduction resistance of the hot surface decreases.

Originality/value

The effects of geometry of the microchannel, including internal and external dimensions on the behavior of heat transfer and fluid flow for pressure ranges between 2 and 8 kPa.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 April 2023

Berrak Gülmüş, Burak Muratçobanoğlu, Emre Mandev and Faraz Afshari

The purpose of this study is to numerically and experimentally survey the thermal efficiency of a block-type heat exchanger operated in different working conditions by using pure…

Abstract

Purpose

The purpose of this study is to numerically and experimentally survey the thermal efficiency of a block-type heat exchanger operated in different working conditions by using pure water and two nanofluids as heat transfer fluids.

Design/methodology/approach

An aluminum block-type heat exchanger integrated with Peltier thermoelectric element was designed and installed to operate in a cycle, and the thermal performance of the heat exchanger, heat transfer rate, Nusselt and heat transfer coefficient variations were examined at different bath water temperatures by using recycled nanofluids. New generation surface-modified Fe3O4@SiO2-mix-(CH2)3Cl@Imidazol/water nanofluid was used as heat transfer fluid in the cycle. In addition, CFD simulation was performed using ANSYS/Fluent to investigate the temperature distribution and fluid flow structure in the used heat exchanger.

Findings

Experiments were carried out by using numerical and experimental methods. In the experiments, the operating conditions such as flow rate, volume fraction of the nanofluid and water bath temperature were changed to find the effect of each parameter on the thermal efficiency. The Reynolds number varied depending on the test conditions, which was calculated in the range of approximately 100 < Re < 350. In addition, Nusselt number and heat transfer coefficient of test fluids were very close to each other. For 0.4% nanofluid, the maximum h value was obtained as 3837.1, when the Reynolds number was measured as 314.4.

Originality/value

In the scientific articles published in the field of heat exchangers operated by nanofluids, little attention has been paid to the stability of the nanofluids and sedimentation of particles in the base fluids. In addition, in most cases, experiments were implemented using an electrical resistance as a heat source. In this research, stable surface-modified nanofluids were used as heat transfer fluids, and it was found that the Peltier thermoelectric can be used as heat sources with acceptable efficiency in flat-type heat exchangers and even non-circular channels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

All dates (4)

Content type

1 – 4 of 4