Search results

1 – 10 of 846
Article
Publication date: 24 May 2024

Mingze Yuan, Lin Ma, Ting Qu, Matthias Thürer and George Q. Huang

Workload contribution calculation approaches in the existing literature overestimate or underestimate indirect workload, which increases both workload fluctuation and shop floor…

Abstract

Purpose

Workload contribution calculation approaches in the existing literature overestimate or underestimate indirect workload, which increases both workload fluctuation and shop floor throughput performance. This study optimizes a Corrected Aggregate Workload (CAW) approach to control the workload contribution of workstations and Work In Progress (WIP) levels, thereby improving the shop floor throughput performance.

Design/methodology/approach

This study adopts simulation experiment by SimPy, and experimental factors are: (1) two workload contribution methods (CAW method and considering Position Corrected Aggregate Workload [PCAW] method); (2) two release methods (LUMS COR release and immediate release); (3) eleven workload norms for LUMS COR release (from 7- to 15-time units), and infinite workload norm for immediate release; and (4) two dispatching rules (First Come First Served, FCFS and Operation Due Date, ODD). Each scenario is replicated 100 times, and for each replication data are collected for 10,000 time units, being the warm-up period set to 3,000-time units.

Findings

The results of this study confirm that the PCAW calculation method outperforms the CAW method, especially during higher workload norm levels. The PCAW method is considered the better solution in practice due to its excellent performance in terms of percentage tardiness and mean tardiness time. The efficient workload contribution approach, as discussed in this study, has the potential to offset delivery performance loss that results from throughput performance loss.

Originality/value

This study proposes a novel approach that considers the workstations’ position in the routing of the job and the position of jobs CAW method. The results demonstrated that it allows shop floor throughput time to be short and feasible. It controls WIP by workload contribution of workstations, resulting in a lean shop floor. Therefore, workload contribution calculation is of particular significance for high-variety Make-To-Order (MTO) companies.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 22 September 2023

Chengkuan Zeng, Shiming Chen and Chongjun Yan

This study addresses the production optimization of a cellular manufacturing system (CMS) in magnetic production enterprises. Magnetic products and raw materials are more critical…

Abstract

Purpose

This study addresses the production optimization of a cellular manufacturing system (CMS) in magnetic production enterprises. Magnetic products and raw materials are more critical to transport than general products because the attraction or repulsion between magnetic poles can easily cause traffic jams. This study needs to address a method to promote the scheduling efficiency of the problem.

Design/methodology/approach

To address this problem, this study formulated a mixed-integer linear programming (MILP) model to describe the problem and proposed an auction and negotiation-based approach with a local search to solve it. Auction- and negotiation-based approaches can obtain feasible and high-quality solutions. A local search operator was proposed to optimize the feasible solutions using an improved conjunctive graph model.

Findings

Verification tests were performed on a series of numerical examples. The results demonstrated that the proposed auction and negotiation-based approach with a local search operator is better than existing solution methods for the problem identified. Statistical analysis of the experiment results using the Statistical Package for the Social Sciences (SPSS) software demonstrated that the proposed approach is efficient, stable and suitable for solving large-scale numerical instances.

Originality/value

An improved auction and negotiation-based approach was proposed; The conjunctive graph model was also improved to describe the problem of CMS with traffic jam constraint and build the local search operator; The authors’ proposed approach can get better solution than the existing algorithms by testing benchmark instances and real-world instances from enterprises.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 10 November 2023

Yong Gui and Lanxin Zhang

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the…

Abstract

Purpose

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the dynamic job-shop scheduling problem (DJSP). Although the dynamic SDR selection classifier (DSSC) mined by traditional data-mining-based scheduling method has shown some improvement in comparison to an SDR, the enhancement is not significant since the rule selected by DSSC is still an SDR.

Design/methodology/approach

This paper presents a novel data-mining-based scheduling method for the DJSP with machine failure aiming at minimizing the makespan. Firstly, a scheduling priority relation model (SPRM) is constructed to determine the appropriate priority relation between two operations based on the production system state and the difference between their priority values calculated using multiple SDRs. Subsequently, a training sample acquisition mechanism based on the optimal scheduling schemes is proposed to acquire training samples for the SPRM. Furthermore, feature selection and machine learning are conducted using the genetic algorithm and extreme learning machine to mine the SPRM.

Findings

Results from numerical experiments demonstrate that the SPRM, mined by the proposed method, not only achieves better scheduling results in most manufacturing environments but also maintains a higher level of stability in diverse manufacturing environments than an SDR and the DSSC.

Originality/value

This paper constructs a SPRM and mines it based on data mining technologies to obtain better results than an SDR and the DSSC in various manufacturing environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 June 2024

Yaser Sadati-Keneti, Mohammad Vahid Sebt, Reza Tavakkoli-Moghaddam, Armand Baboli and Misagh Rahbari

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating…

Abstract

Purpose

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating technologies that can improve the quality of human life. Nowadays, we can make our factories smarter using new concepts and tools like real-time self-optimization. This study aims to take a step towards implementing key features of smart manufacturing including  preventive self-maintenance, self-scheduling and real-time decision-making.

Design/methodology/approach

A new bi-objective mathematical model based on Industry 4.0 to schedule received customer orders, which minimizes both the total earliness and tardiness of orders and the probability of machine failure in smart manufacturing, was presented. Moreover, four meta-heuristics, namely, the multi-objective Archimedes optimization algorithm (MOAOA), NSGA-III, multi-objective simulated annealing (MOSA) and hybrid multi-objective Archimedes optimization algorithm and non-dominated sorting genetic algorithm-III (HMOAOANSGA-III) were implemented to solve the problem. To compare the performance of meta-heuristics, some examples and metrics were presumed and solved by using the algorithms, and the performance and validation of meta-heuristics were analyzed.

Findings

The results of the procedure and a mathematical model based on Industry 4.0 policies showed that a machine performed the self-optimizing process of production scheduling and followed a preventive self-maintenance policy in real-time situations. The results of TOPSIS showed that the performances of the HMOAOANSGA-III were better in most problems. Moreover, the performance of the MOSA outweighed the performance of the MOAOA, NSGA-III and HMOAOANSGA-III if we only considered the computational times of algorithms. However, the convergence of solutions associated with the MOAOA and HMOAOANSGA-III was better than those of the NSGA-III and MOSA.

Originality/value

In this study, a scheduling model considering a kind of Industry 4.0 policy was defined, and a novel approach was presented, thereby performing the preventive self-maintenance and self-scheduling by every single machine. This new approach was introduced to integrate the order scheduling system using a real-time decision-making method. A new multi-objective meta-heuristic algorithm, namely, HMOAOANSGA-III, was proposed. Moreover, the crowding-distance-quality-based approach was presented to identify the best solution from the frontier, and in addition to improving the crowding-distance approach, the quality of the solutions was also considered.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 June 2023

Hana Begić, Mario Galić and Uroš Klanšek

Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with…

Abstract

Purpose

Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with various formulations and solving methods. This problem can range from a simple scenario involving one source, one material and one destination to a more challenging and complex case involving multiple sources, multiple materials and multiple destinations. This paper presents an Internet of Things (IoT)-supported active building information modeling (BIM) system for optimized multi-project ready-mix concrete (RMC) delivery.

Design/methodology/approach

The presented system is BIM-based, IoT supported, dynamic and automatic input/output exchange to provide an optimal delivery program for multi-project ready-mix-concrete problem. The input parameters are extracted as real-time map-supported IoT data and transferred to the system via an application programming interface (API) into a mixed-integer linear programming (MILP) optimization model developed to perform the optimization. The obtained optimization results are further integrated into BIM by conventional project management tools. To demonstrate the features of the suggested system, an RMCDP example was applied to solve that included four building sites, seven eligible concrete plants and three necessary RMC mixtures.

Findings

The system provides the optimum delivery schedule for multiple RMCs to multiple construction sites, as well as the optimum RMC quantities to be delivered, the quantities from each concrete plant that must be supplied, the best delivery routes, the optimum execution times for each construction site, and the total minimal costs, while also assuring the dynamic transfer of the optimized results back into the portfolio of multiple BIM projects. The system can generate as many solutions as needed by updating the real-time input parameters in terms of change of the routes, unit prices and availability of concrete plants.

Originality/value

The suggested system allows dynamic adjustments during the optimization process, andis adaptable to changes in input data also considering the real-time input data. The system is based on spreadsheets, which are widely used and common tool that most stakeholders already utilize daily, while also providing the possibility to apply a more specialized tool. Based on this, the RMCDP can be solved using both conventional and advanced optimization software, enabling the system to handle even large-scale tasks as necessary.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 July 2024

Babak Javadi and Mahla Yadegari

This paper aims to deal with intra and inter-cell layout problems in cellular manufacturing systems. The model is organized to minimize the total handling cost, i.e. intra and…

Abstract

Purpose

This paper aims to deal with intra and inter-cell layout problems in cellular manufacturing systems. The model is organized to minimize the total handling cost, i.e. intra and inter-cell handling costs in a continuous environment.

Design/methodology/approach

The research was conducted by developing a mixed integer mathematical model. Due to the complexity and NP-hard nature of the cellular manufacturing layout problem, which mostly originated from binary variables, a “graph-pair” representation is used for every machine set and cells each of which manipulates the relative locations of the machines and cells both in left-right and below-up direction. This approach results in a linear model as the binary variables are eliminated and the relative locations of the machines and cells are determined. Moreover, a genetic algorithm as an efficient meta-heuristic algorithm is embedded in the resulting linear programming model after graph-pair construction.

Findings

Various numerical examples in both small and large sizes are implemented to verify the efficiency of the linear programming embedded genetic algorithm.

Originality/value

Considering the machine and cell layout problem simultaneously within the shop floor under a static environment enabled managers to use this concept to develop the models with high efficiency.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 18 April 2024

Zhanghuang Xie, Xiaomei Li, Dian Huang, Andrea Appolloni and Kan Fang

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution…

Abstract

Purpose

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution approaches to solve such problem.

Design/methodology/approach

We propose a mathematical formulation for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines, and develop a simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length to solve the problem.

Findings

The simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length (SAHH-osla) that we proposed can be quite efficient in solving the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Originality/value

To the best of our knowledge, we are one of the first to consider both cost-related and time-related criteria for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 23 December 2022

Ruchi Mishra, Rajesh Kr Singh and Malin Song

The study aims to identify the central paradoxical tensions existing in developing resilience in organisations. The main thrust of this study is to develop a thorough…

Abstract

Purpose

The study aims to identify the central paradoxical tensions existing in developing resilience in organisations. The main thrust of this study is to develop a thorough understanding of diverse conflicting tensions in building resilience and develop the possible strategies to surmount these tensions.

Design/methodology/approach

Using the case study approach, the study applied theory-elaboration strategy as this study is based on well-established literature from both digitalisation and resilience. The study uses the paradox theory lens in a case study to reconcile both theories with contextual idiosyncrasies.

Findings

The paradox theory lens provides perspectives to understand tensions during resilience development and the role of digital transformation in this process. It assesses the potential solutions for surmounting tensions in resilient operations. The mapping of workable solutions with different paradoxes and propositions has been proposed for future empirical research.

Research limitations/implications

The study suggests that practitioners should not consider resilience and sustainability as mutually exclusive; instead, managers must embrace ongoing tensions to bring solutions to address these two essential organisational priorities.

Originality/value

To the best of the authors' knowledge, this is the first empirical study that applies paradox theory to understand how an organisation can build resilience while confronting several paradoxes. The study findings support that resilience practices can move in tandem with environmental sustainability goals rather than being usually mutually exclusive.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 8 March 2024

Peter Madzik, Lukas Falat, Luay Jum’a, Mária Vrábliková and Dominik Zimon

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine…

273

Abstract

Purpose

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine learning approach based on Latent Dirichlet Allocation we were able to identify latent topics related to human-centric aspect of Industry 5.0.

Design/methodology/approach

This study aims to create a scientific map of the human-centric aspect of manufacturing and thus provide a systematic framework for further research development of Industry 5.0.

Findings

In this study a 140 unique research topics were identified, 19 of which had sufficient research impact and research interest so that we could mark them as the most significant. In addition to the most significant topics, this study contains a detailed analysis of their development and points out their connections.

Originality/value

Industry 5.0 has three pillars – human-centric, sustainable, and resilient. The sustainable and resilient aspect of manufacturing has been the subject of many studies in the past. The human-centric aspect of such a systematic description and deep analysis of latent topics is currently just passing through.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 10 of 846