Search results

1 – 4 of 4
Article
Publication date: 1 August 2000

Virpi Pennanen, Markku Tammenmaa, Tommi Reinikainen, Jiansen Zhu and Wei Lin

Owing to the demands of increasing I/O counts and thermal performance BGA (ball grid array) type packaging concepts are rapidly gaining in popularity. Use of various modelling…

Abstract

Owing to the demands of increasing I/O counts and thermal performance BGA (ball grid array) type packaging concepts are rapidly gaining in popularity. Use of various modelling tools is an obvious way to save resources by discarding the most unreliable solutions before wasting testing capacity. A testing procedure was created and then evaluated. Two components were assembled on test boards and the assembled boards were temperature cycled from –40 to +125°C. Parametric 3D FE‐models (finite element) of the components were generated and models were verified. Environmental conditions were added to assess the lifetimes of the assemblies in the targeted environment. Some differences in the TBGAs board level reliability were found. With all contributions of parameters the first failures happened after 1,000 cycles. FE‐modelling combined with accelerated stress testing proved to be an effective tool for test result analysis and for rationalising the test sequences.

Details

Soldering & Surface Mount Technology, vol. 12 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 1 December 1999

78

Abstract

Details

Microelectronics International, vol. 16 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 15 July 2022

Jiansen Zhao, Xin Ma, Bing Yang, Yanjun Chen, Zhenzhen Zhou and Pangyi Xiao

Since many global path planning algorithms cannot achieve the planned path with both safety and economy, this study aims to propose a path planning method for unmanned vehicles…

Abstract

Purpose

Since many global path planning algorithms cannot achieve the planned path with both safety and economy, this study aims to propose a path planning method for unmanned vehicles with a controllable distance from obstacles.

Design/methodology/approach

First, combining satellite image and the Voronoi field algorithm (VFA) generates rasterized environmental information and establishes navigation area boundary. Second, establishing a hazard function associated with navigation area boundary improves the evaluation function of the A* algorithm and uses the improved A* algorithm for global path planning. Finally, to reduce the number of redundant nodes in the planned path and smooth the path, node optimization and gradient descent method (GDM) are used. Then, a continuous smooth path that meets the actual navigation requirements of unmanned vehicle is obtained.

Findings

The simulation experiment proved that the proposed global path planning method can realize the control of the distance between the planned path and the obstacle by setting different navigation area boundaries. The node reduction rate is between 33.52% and 73.15%, and the smoothness meets the navigation requirements. This method is reasonable and effective in the global path planning process of unmanned vehicle and can provide reference to unmanned vehicles’ autonomous obstacle avoidance decision-making.

Originality/value

This study establishes navigation area boundary for the environment based on the VFA and uses the improved A* algorithm to generate a navigation path that takes into account both safety and economy. This study also proposes a method to solve the redundancy of grid environment path nodes and large-angle steering and to smooth the path to improve the applicability of the proposed global path planning method. The proposed global path planning method solves the requirements of path safety and smoothness.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 7 November 2019

Peng Dong, Shengdun Zhao, Shuqin Fan, Muzhi Zhu and Peng Zhang

The drive shaft and the distribution shaft of a traditional radial piston pump are in a cantilever state. To solve this problem, this paper aims to present a radial piston pump…

Abstract

Purpose

The drive shaft and the distribution shaft of a traditional radial piston pump are in a cantilever state. To solve this problem, this paper aims to present a radial piston pump with through shaft driving and valve plate distribution.

Design/methodology/approach

The working principle of the pump is discussed in detail. In this radial piston pump, valve plate distribution parts are designed to distribute oil to the piston chambers, and the distribution shaft is replaced. A bearing is installed between the stator and rotator to reduce the friction. The transmission shaft is supported by two bearings to ensure smooth operation. The support force of the transmission shaft is optimized. In addition, the flow pulsation principle is presented. To accomplish the change, the displacement of the radial piston pump, the proportional control system is designed.

Findings

After completing the machining and assembly of the pump, an experimental study was carried out. The results show that the output flow of the pump is basically the same as the theoretical flow.

Originality/value

The friction between the slipping shoes and the stator is greatly reduced due to the function of rolling bearings. The higher stability of the driveshaft is obtained for the reason of double-sided support. The radial piston pump has a novel structural design in reducing the friction between the shoes and the stator and improving the stability of the transmission shaft.

Details

Assembly Automation, vol. 40 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 4 of 4