Search results

1 – 10 of over 1000
Article
Publication date: 6 April 2021

Ifadhila Affia and Ammar Aamer

Real-time visibility and traceability in warehousing could be accomplished by implementing the internet-of-things (IoT) technology. The purpose of this paper is to develop a…

1690

Abstract

Purpose

Real-time visibility and traceability in warehousing could be accomplished by implementing the internet-of-things (IoT) technology. The purpose of this paper is to develop a roadmap for designing an IoT-based smart warehouse infrastructure and, respectively, design and apply the IoT-based smart warehouse infrastructure using a developed roadmap. More specifically, this study first identifies critical components to design an IoT-based smart warehouse infrastructure. Second, the study at hand identifies essential factors that contribute to the successful implementation of IoT-based smart warehouse infrastructure.

Design/methodology/approach

A qualitative-descriptive method, through a comprehensive review of the relevant studies, was used in this study to develop a roadmap. A prototype system was then designed to simulate a case company’s actual warehouse operations in one of the manufacturing companies in Indonesia.

Findings

A framework was proposed which is viable for designing an IoT-based smart warehouse infrastructure. Based on the data collected from a case company, the proposed smart warehouse infrastructure design successfully implemented real-time visibility and traceability and improved overall warehouse efficiency.

Research limitations/implications

While the framework in this research was carried out in one of the developing counties, the study could be used as the basis for future research in a smart warehouse, IoT and related topics.

Originality/value

This research enhances the limited knowledge to establish the IoT infrastructure for a smart warehouse to enable real-time visibility and traceability. This study is also the first to specifically propose a framework for designing an IoT-based smart warehouse infrastructure. The proposed framework can motivate companies in developing countries to deploy efficient and effective smart warehouses using IoT to drive the countries’ economic growth.

Details

Journal of Science and Technology Policy Management, vol. 13 no. 1
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 13 December 2023

Ankur Kumar, Ambika Srivastava and Subhas C. Misra

The purpose of this study is to investigate the influence that technological, environmental and organizational factors have on the rate of Internet of Things (IoT) adoption within…

136

Abstract

Purpose

The purpose of this study is to investigate the influence that technological, environmental and organizational factors have on the rate of Internet of Things (IoT) adoption within the logistics industry. In addition, the moderating effect that the risk factor has on the technological, environmental and organizational factors regarding the implementation of IoT in logistics.

Design/methodology/approach

For the purpose of testing the models and hypotheses, a survey was carried out in order to collect the responses from currently employed individuals at various companies working in the field of logistics or IoT. For the purpose of analysis, the authors made use of the partial least squares structure equation model (PLS-SEM) technique.

Findings

Findings of this study concluded that technology- and environmental-related factors significantly affect the adoption of IoT in logistics, while risk acts as a moderator for the technological-related factor only in the adoption of IoT in logistics.

Research limitations/implications

The relevance of the authors' study lies in the growing importance of IoT in logistics and the need for logistics companies to understand the factors that impact the adoption of IoT in their operations. By identifying and analyzing the factors that influence IoT adoption in logistics, the authors' study provides valuable insights that can help logistics companies make informed decisions about whether and how to adopt IoT.

Practical implications

The research will help organizations make strategies for the successful adoption of IoT and ease the lives of all the stakeholders.

Originality/value

In this research, the authors attempted to find the factors that influence the adoption of IoT in logistics management. The influence of the technological, environmental, organizational and risk-related factors on the adoption of IoT in logistics management was studied. The moderating effect of risk over these factors on the adoption of IoT in logistics was also analyzed. This is original work and has never been done earlier.

Book part
Publication date: 28 March 2022

Mehul Parmar and Ranjan Kumar

The Internet of Things (IoT) is becoming increasingly popular in agribusiness to help increase food production capacity for the ever-expanding global population. This chapter…

Abstract

The Internet of Things (IoT) is becoming increasingly popular in agribusiness to help increase food production capacity for the ever-expanding global population. This chapter provides a holistic overview of the latest trends around the applications of IoT in agriculture. We begin by giving an overview of IoT and its capabilities, followed by a deep dive into the practical and realistic aspects of leveraging IoT into the agroecosystem. IoT is already being used for many intelligent agriculture applications, such as open-field agriculture, controlled environment agriculture (greenhouse), livestock breeding, agricultural machinery, and more. This chapter examines those applications and ventures beyond the farm into several other aspects of the ecosystem, including storage, warehouse ambiance control, agri-data analytics and decision control, logistics, environmental safety, etc. The contents of the chapter would be based on extensive studies and empirical analysis of the latest research papers on this subject from around the globe, accurately interpreted and transformed by the authors in light of their academic background and professional experience in the digital transformation arena.

Book part
Publication date: 17 September 2020

Unlike the historical robots, the contemporary and futuristic ‘working’ robots within organisations are capable of taking decisions without human intervention. This chapter

Abstract

Unlike the historical robots, the contemporary and futuristic ‘working’ robots within organisations are capable of taking decisions without human intervention. This chapter reviews the technical evolution of robots across history with the necessary evolution of operational procedures regarding laws and ethical standards. The objective of this review is to have a futuristic holistic insight into the new generation of robots that are invading our working environment within organisations. Out of the very wide perspective of robotics research field, this chapter only discusses the ‘working’ robots (excluding domestic, social, and warfare robots) in organisations along with its ethical and legal associated issues. To achieve this objective, the recent ‘working robot’ definition and associated expected ethics and laws, termed in this chapter as ‘Ten Commandments’ would be necessary for the utilisation of robotics before releasing ‘intelligent’ robots in the workplace environment. The proposed ‘Ten Commandments’ can be utilised by robot manufacturer to embed ‘machine testimony’ to their products. Providing that such ‘robot ethics’ built as part of the algorithmic structure of robots, a useful innovation like robot–manager is also identified in the organisational environment which can have multiple benefits as discussed in this chapter.

Article
Publication date: 23 July 2021

Chelinka Rafiesta Sahara and Ammar Mohamed Aamer

Creating a real-time data integration when developing an internet-of-things (IoT)-based warehouse is still faced with challenges. It involves a diverse knowledge of novel…

1507

Abstract

Purpose

Creating a real-time data integration when developing an internet-of-things (IoT)-based warehouse is still faced with challenges. It involves a diverse knowledge of novel technology and skills. This study aims to identify the critical components of the real-time data integration processes in IoT-based warehousing. Then, design and apply a data integration framework, adopting the IoT concept to enable real-time data transfer and sharing.

Design/methodology/approach

The study used a pilot experiment to verify the data integration system configuration. Radio-frequency identification (RFID) technology was selected to support the integration process in this study, as it is one of the most recognized products of IoT.

Findings

The experimentations’ results proved that data integration plays a significant role in structuring a combination of assorted data on the IoT-based warehouse from various locations in a real-time manner. This study concluded that real-time data integration processes in IoT-based warehousing could be generated into three significant components: configuration, databasing and transmission.

Research limitations/implications

While the framework in this research was carried out in one of the developing counties, this study’s findings could be used as a foundation for future research in a smart warehouse, IoT and related topics. The study provides guidelines for practitioners to design a low-cost IoT-based smart warehouse system to obtain more accurate and timely data to support the quick decision-making process.

Originality/value

The research at hand provides the groundwork for researchers to explore the proposed theoretical framework and develop it further to increase inventory management efficiency of warehouse operations. Besides, this study offers an economical alternate for an organization to implement the integration software reasonably.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 10 August 2021

Silvia Sagita Arumsari and Ammar Aamer

While several warehouses are now technologically equipped and smart, the implementation of real-time analytics in warehouse operations is scarcely reported in the literature. This…

Abstract

Purpose

While several warehouses are now technologically equipped and smart, the implementation of real-time analytics in warehouse operations is scarcely reported in the literature. This study aims to develop a practical system for real-time analytics of process monitoring in an internet-of-things (IoT)-enabled smart warehouse environment.

Design/methodology/approach

A modified system development research process was used to carry out this research. A prototype system was developed that mimicked a case company’s actual warehouse operations in Indonesia’s manufacturing companies. The proposed system relied heavily on the utilization of IoT technologies, wireless internet connection and web services to keep track of the product movement to provide real-time access to critical warehousing activities, helping make better, faster and more informed decisions.

Findings

The proposed system in the presented case company increased real-time warehousing processes visibility for stakeholders at different management levels in their most convenient ways by developing visual representation to display crucial information. The numerical or textual data were converted into graphics for ease of understanding for stakeholders, including field operators. The key elements for the feasible implementation of the proposed model in an industrial area were discussed. They are strategic-level components, IoT-enabled warehouse environments, customized middleware settings, real-time processing software and visual dashboard configuration.

Research limitations/implications

While this study shows a prototype-based implementation of actual warehouse operations in one of Indonesia’s manufacturing companies, the architectural requirements are applicable and extensible by other companies. In this sense, the research offers significant economic advantages by using customized middleware to avoid unnecessary waste brought by the off-the-shelves generic middleware, which is not entirely suitable for system development.

Originality/value

This research’s finding contributes to filling the gap in the limited body of knowledge of real-time analytics implementation in warehousing operations. This should encourage other researchers to enhance and develop the devised elements to enrich smart warehousing’s theoretical knowledge. Besides, the successful proof-of-concept implementation reported in this research would allow other companies to gain valuable insights and experiences.

Details

Journal of Science and Technology Policy Management, vol. 13 no. 2
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 31 August 2021

Lixin Liu, Justin Zuopeng Zhang, Wu He and Wenzhuo Li

Risks resulted from asymmetric information have become crucial barriers for commercial banks to implement supply chain finance (SCF) – mainly the inventory pledge financing (IPF)…

1241

Abstract

Purpose

Risks resulted from asymmetric information have become crucial barriers for commercial banks to implement supply chain finance (SCF) – mainly the inventory pledge financing (IPF). At the same time, online financial service providers (OFSPs) are emerging as strong competitors in the SCF market. As a result, commercial banks need to update their traditional SCF business models and alleviate their over-dependence on OFSPs.

Design/methodology/approach

The authors employ a multi-case-study method to investigate how the Internet of things (IoT) and blockchain technologies can be jointly leveraged to mitigate SCF risks. In-depth interviews were conducted to depict the business models and their novel ecosystem to reinforce traditional banks' ability in SCF services.

Findings

From the perspective of information asymmetry, the authors categorize IPF risks into three groups based on the principal-agent theory: collateral, warehousing and liquidity risk. The findings suggest that IoT can primarily improve traditional banks' information acquisition ability, and blockchain can facilitate credible information transformation, enabling banks to acquire knowledge from collaterals. Besides, the e-platform in the new architecture increases banks' involvement in the supply chain and builds a fair network to curtail warehousing risks. The employment of smart contracts and collaborative mechanism ensure process and outcome control in mitigating liquidity risks.

Originality/value

The research contributes to the literature by confirming the role of emerging technologies in reducing information asymmetry risks. Besides, the findings provide valuable insights for practitioners to promote effective practices and approaches in IPF.

Details

Journal of Enterprise Information Management, vol. 34 no. 5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 4 July 2023

Pratik Maheshwari, Sachin Kamble, Satish Kumar, Amine Belhadi and Shivam Gupta

The digital warehouse management system is an emergence that forms a critical part of the transformation of economic structure in Industry 4.0. In the present business scenario…

1429

Abstract

Purpose

The digital warehouse management system is an emergence that forms a critical part of the transformation of economic structure in Industry 4.0. In the present business scenario, the warehouse management system encounters a messy layout, poor damage control, unsatisfactory order management, lack of visibility and lack of technological interventions. Digital twin (DT) based warehouse system shows the ontology and knowledge graphs for competitive advantage by consolidating and transferring goods directly from an inbound supplier to an outbound customer on short notice and with no or limited storage. There remains a lack of clarity on how the DT can be implemented successfully in warehouse management.

Design/methodology/approach

The current literature remains largely unstructured and scattered due to a lack of a systematic approach to integrating the research implications and analysis. This paper probes the conceptualization of the DT with the help of theoretical analysis using the systematic literature analysis method.

Findings

The study explores essential concepts such as interoperability and integrability in implementing DT. Further, it analyzes the role of a supply chain control tower (SCCT) in modern supply chain management. A research framework is proposed for practitioners and academicians by incorporating the opportunities and challenges associated with DT implementation. The research findings are mainly threefold: Conceptualization of DT, Featuring SCCT and Exploration of cross-computer platform interfaces, scalability and maintenance strategies.

Originality/value

This study is among the first to analyze and review DT applications in warehouse management. Moreover, the study proposes a theoretical toolbox for the practitioners to successfully implement the DT in warehouse DT-based warehouse management system: A theoretical toolbox for future research and applications.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 14 August 2017

Jose Ignacio Tamayo Segarra, Bilal Al Jammal and Hakima Chaouchi

Internet of Things’ (IoT’s) first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID) technology. Later on…

2898

Abstract

Purpose

Internet of Things’ (IoT’s) first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID) technology. Later on, monitoring services became one of the major interests, including sensing technologies, and then more actuation for remote control-type of IoT applications such as smart homes, smart cities and Industry 4.0. In this paper, the authors focus on the RFID technology impairment. They propose to take advantage of the mature IoT technologies that offer native service discovery such as blutooth or LTE D2D ProSe or Wifi Direct. Using the automatic service discovery in the new framework will make heterogeneous readers aware of the presence of other readers and this will be used by the proposed distributed algorithm to better control the multiple RFID reader interference problem. The author clearly considers emerging Industry 4.0 use case, where RFID technology is of major interest for both identification and tracking. To enhance the RFID tag reading performance, collisions in the RFID frequency should be minimized with reader-to-reader coordination protocols. In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation.

Design/methodology/approach

In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation to study its behavior in very dense and heterogeneous RFID environments. Specifically, the author explores the coexistence of powerful static readers and small mobile readers, comparing the proposal with a standard ETSI CSMA method. The proposal reduces significantly the number of access attempts, which are resource-expensive for the readers. The results show that the objectives of DiSim are met, producing low reader collision probability and, however, having lower average readings per reader per time.

Findings

DiSim is evaluated with the ETSI standard LBT protocol for multi-reader environments in several environments with varied levels of reader and tag densities, having both static powerful RFID readers and heterogeneous randomly moving mobile RFID readers. It effectively reduces the number of backoffs or contentions for the RFID channel. This has high reading success rate due to the avoided collisions; however, the readers are put to wait, and DiSim has less average readings per reader per time. As an additional side evaluation, the ETSI standard LBT mechanism was found to present a good performance for low-density mid-coverage scenarios, however, with high variability on the evaluation results.

Research limitations/implications

To show more results, the author needs to do real experimentation in a warehouse, such as Amazon warehouse, where he expects to have more and more robots, start shelves, automatic item finding on the shelve, etc.

Practical implications

Future work considers experimentation in a real warehouse equipped with heterogeneous RFID readers and real-time analysis of RFID reading efficiency also combined with indoor localization and navigation for warehouse mobile robots.

Social implications

More automatization is expected in the future; this work makes the use of RFID technology more efficient and opens more possibilities for services deployment in different domains such as the industry which was considered not only in this paper but also in smart cites and smart homes.

Originality/value

Compared to the literature, the proposal offers the advantage to not be dependent on a centralized server controlling the RFID readers. It also offers the possibility for an existing RFID architecture to add new readers from a different manufacturer, as the readers using the approach will have the possibility to discover the capabilities of the new interaction other RFID readers. This solution takes advantage of the available proximity service that will be more and more offered by the IoT technologies.

Article
Publication date: 6 July 2018

Y.P. Tsang, K.L. Choy, C.H. Wu, G.T.S. Ho, Cathy H.Y. Lam and P.S. Koo

Since the handling of environmentally sensitive products requires close monitoring under prescribed conditions throughout the supply chain, it is essential to manage specific…

5428

Abstract

Purpose

Since the handling of environmentally sensitive products requires close monitoring under prescribed conditions throughout the supply chain, it is essential to manage specific supply chain risks, i.e. maintaining good environmental conditions, and ensuring occupational safety in the cold environment. The purpose of this paper is to propose an Internet of Things (IoT)-based risk monitoring system (IoTRMS) for controlling product quality and occupational safety risks in cold chains. Real-time product monitoring and risk assessment in personal occupational safety can be then effectively established throughout the entire cold chain.

Design/methodology/approach

In the design of IoTRMS, there are three major components for risk monitoring in cold chains, namely: wireless sensor network; cloud database services; and fuzzy logic approach. The wireless sensor network is deployed to collect ambient environmental conditions automatically, and the collected information is then managed and applied to a product quality degradation model in the cloud database. The fuzzy logic approach is applied in evaluating the cold-associated occupational safety risk of the different cold chain parties considering specific personal health status. To examine the performance of the proposed system, a cold chain service provider is selected for conducting a comparative analysis before and after applying the IoTRMS.

Findings

The real-time environmental monitoring ensures that the products handled within the desired conditions, namely temperature, humidity and lighting intensity so that any violation of the handling requirements is visible among all cold chain parties. In addition, for cold warehouses and rooms in different cold chain facilities, the personal occupational safety risk assessment is established by considering the surrounding environment and the operators’ personal health status. The frequency of occupational safety risks occurring, including cold-related accidents and injuries, can be greatly reduced. In addition, worker satisfaction and operational efficiency are improved. Therefore, it provides a solid foundation for assessing and identifying product quality and occupational safety risks in cold chain activities.

Originality/value

The cold chain is developed for managing environmentally sensitive products in the right conditions. Most studies found that the risks in cold chain are related to the fluctuation of environmental conditions, resulting in poor product quality and negative influences on consumer health. In addition, there is a lack of occupational safety risk consideration for those who work in cold environments. Therefore, this paper proposes IoTRMS to contribute the area of risk monitoring by means of the IoT application and artificial intelligence techniques. The risk assessment and identification can be effectively established, resulting in secure product quality and appropriate occupational safety management.

Details

Industrial Management & Data Systems, vol. 118 no. 7
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 1000