Search results

1 – 4 of 4
Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 3 May 2024

Zeynep Tuğçe Kalender

The main purpose of this study is to present a new approach to managing process changes in uncertain conditions. The proposed approach is applied in one of the largest production…

Abstract

Purpose

The main purpose of this study is to present a new approach to managing process changes in uncertain conditions. The proposed approach is applied in one of the largest production companies in Turkey to manage the changes in their warehouse processes which formed after the merger.

Design/methodology/approach

In the model, interval-valued hesitant fuzzy the decision-making trial and evaluation laboratory (IVHF-DEMATEL) methodology is integrated into one of the most used BPR tools, change matrix. The main focus of the proposed model is to increase both flexibility and applicability in uncertain conditions. Thus, while the change matrix enables companies to be agile and responsive to changes, IVHF-DEMATEL provides a better way to continuously evaluate and determine critical processes, and strategies to align with evolving conditions.

Findings

Initial analysis revealed two major problems, the slowness of shipments caused by the increase in costs and the confusion in the organizational structure. However, the conventional methods fall short of effectively determination of critical objectives in terms of dealing with uncertainty. Therefore, a comprehensive roadmap for managing the change is developed with the integration of IVHF-DEMATEL and change matrix so that a successful transition is achieved.

Originality/value

It is believed that the study will contribute to the existing literature by providing a novel approach in which the IVHF-DEMATEL methodology is integrated into the change matrix. Also, the study provides a guideline for practical applications by presenting a step-by-step implementation of the model.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 29 April 2024

Qiuqi Wu, Youchao Sun and Man Xu

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study…

Abstract

Purpose

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study of human reliability. An information flow field model of human–machine interaction is put forward to help better pinpoint the factors influencing performance and to make up for the lack of a model of information flow and feedback processes in the aircraft cockpit. To enhance the efficacy of the human–machine interaction, this paper aims to examine the important coupling factors in the system using the findings of the simulation.

Design/methodology/approach

The performance-shaping factors were retrieved from the model, which was created to thoroughly describe the information flow. The coupling degree between the performance shaping factors was calculated, and simulation and sensitivity analysis are based on system dynamics.

Findings

The results show that the efficacy of human–computer interaction is significantly influenced by individual important factors and coupling factors. To decrease the frequency of accidents after seven hours, attention should be paid to these factors.

Originality/value

The novelty of this work lies in proposing a theoretical model of cockpit information flow and using system dynamics to analyse the effect of the factors in the human–machine loop on human–machine efficacy.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 May 2024

Jin Ma and Tong Wu

Social network group decision-making (SNGDM) has rapidly developed because of the impact of social relationships on decision-making behavior. However, not only do social…

Abstract

Purpose

Social network group decision-making (SNGDM) has rapidly developed because of the impact of social relationships on decision-making behavior. However, not only do social relationships affect decision-making behavior, but decision-making behavior also affects social relationships. Such complicated interactions are rarely considered in current research. To bridge this gap, this study proposes an SNGDM model that considers the interaction between social trust relationships and opinion evolution.

Design/methodology/approach

First, the trust propagation and aggregation operators are improved to obtain a complete social trust relationship among decision-makers (DMs). Second, the evolution of preference information under the influence of trust relationships is measured, and the development of trust relationships during consensus interactions is predicted. Finally, the iteration of consensus interactions is simulated using an opinion dynamics model. A case study is used to verify the feasibility of the proposed model.

Findings

The proposed model can predict consensus achievement based on a group’s initial trust relationship and preference information and effectively captures the dynamic characteristics of opinion evolution in social networks.

Originality/value

This study proposes an SNGDM model that considers the interaction of trust and opinion. The proposed model improves trust propagation and aggregation operators, determines improved preference information based on the existing trust relationships and predicts the evolution of trust relationships in the consensus process. The dynamic interaction between the two accelerates DMs to reach a consensus.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Access

Year

Last week (4)

Content type

Earlycite article (4)
1 – 4 of 4