Search results

1 – 10 of 552
Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1071

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 17 February 2012

418

Abstract

Details

Assembly Automation, vol. 32 no. 1
Type: Research Article
ISSN: 0144-5154

Content available
594

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 11 July 2019

Matthew Li, David Allinson and Kevin Lomas

The purpose of this paper is to identify the impact of traditionally unmonitored energy sources and sinks on assessment of the as-built thermal performance of occupied homes. The…

2555

Abstract

Purpose

The purpose of this paper is to identify the impact of traditionally unmonitored energy sources and sinks on assessment of the as-built thermal performance of occupied homes. The analysis aims to demonstrate the potential scale of uncertainties introduced in a heat balance estimation of the heat transfer coefficient (HTC) when using in-use monitored data.

Design/methodology/approach

Energy flows for two UK homes – one a 1930s dwelling with high heat loss, the second a higher-performing 2014-built home – are predicted using the UK Government’s standard assessment procedure (SAP) and visualised using Sankey diagrams. Selected modelled energy flows are used as inputs in a quasi-steady state heat balance to calculate in-use HTCs as if from measured data sets gathered in occupied homes. The estimated in-use HTCs are compared against SAP-calculated values to illustrate the impact of including or omitting various heat sources and sinks.

Findings

The results demonstrate that for dwellings with low heat loss, the increased proportion of heating demand met by unmetered internal and solar gains informs a greater sensitivity of a heat balance estimation of the HTC to their omission. While simple quasi-steady state heat balance methods may be appropriate for dwellings with very high heat loss, alternative approaches are likely to be required for those with lower heat loss.

Originality/value

A need to understand the impacts of unmetered heat flows on the accuracy with which a building’s thermal performance may be inferred from in-use monitored data is identified: this paper illustrates the scale of these impacts for two homes at opposite ends of the energy performance scale.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 3 October 2017

Tristan Gerrish, Kirti Ruikar, Malcolm Cook, Mark Johnson and Mark Phillip

The aim of this paper is to demonstrate the use of historical building performance data to identify potential issues with the build quality and operation of a building, as a means…

2765

Abstract

Purpose

The aim of this paper is to demonstrate the use of historical building performance data to identify potential issues with the build quality and operation of a building, as a means of narrowing the scope of in-depth further review.

Design/methodology/approach

The response of a room to the difference between internal and external temperatures is used to demonstrate patterns in thermal response across monitored rooms in a single building, to clearly show where rooms are under-performing in terms of their ability to retain heat during unconditioned hours. This procedure is applied to three buildings of different types, identifying the scope and limitation of this method and indicating areas of building performance deficiency.

Findings

The response of a single space to changing internal and external temperatures can be used to determine whether it responds differently to other monitored buildings. Spaces where thermal bridging and changes in use from design were encountered exhibit noticeably different responses.

Research limitations/implications

Application of this methodology is limited to buildings where temperature monitoring is undertaken both internally for a variety of spaces, and externally, and where knowledge of the uses of monitored spaces is available. Naturally ventilated buildings would be more suitable for analysis using this method.

Originality/value

This paper contributes to the understanding of building energy performance from a data-driven perspective, to the knowledge on the disparity between building design intent and reality, and to the use of basic commonly recorded performance metrics for analysis of potentially detrimental building performance issues.

Open Access
Article
Publication date: 21 April 2022

Myeongjin Kim and Joo Hyun Moon

This study aims to introduce a deep neural network (DNN) to estimate the effective thermal conductivity of the flat heat pipe with spreading thermal resistance.

1683

Abstract

Purpose

This study aims to introduce a deep neural network (DNN) to estimate the effective thermal conductivity of the flat heat pipe with spreading thermal resistance.

Design/methodology/approach

A total of 2,160 computational fluid dynamics simulation cases over up to 2,000 W/mK are conducted to regress big data and predict a wider range of effective thermal conductivity up to 10,000 W/mK. The deep neural networking is trained with reinforcement learning from 10–12 steps minimizing errors in each step. Another 8,640 CFD cases are used to validate.

Findings

Experimental, simulational and theoretical approaches are used to validate the DNN estimation for the same independent variables. The results from the two approaches show a good agreement with each other. In addition, the DNN method required less time when compared to the CFD.

Originality/value

The DNN method opens a new way to secure data while predicting in a wide range without experiments or simulations. If these technologies can be applied to thermal and materials engineering, they will be the key to solve thermal obstacles that many longing to overcome.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 December 2022

Marcelo Colaço, Fabio Bozzoli, Luca Cattani and Luca Pagliarini

The purpose of this paper is to apply the conjugate gradient (CG) method, together with the adjoint operator (AO) to the pulsating heat pipe problem, including some quite…

383

Abstract

Purpose

The purpose of this paper is to apply the conjugate gradient (CG) method, together with the adjoint operator (AO) to the pulsating heat pipe problem, including some quite interesting experimental results. The CG method, together with the AO, was able to estimate the unknown functions more efficiently than the other techniques presented in this paper. The estimation of local heat transfer coefficients, rather than the global ones, in pulsating heat pipes is a relatively new subject and presenting a robust, efficient and self-regularized inverse tool to estimate it, supported also by some experimental results, is the main purpose of this paper. To also increase the visibility and the general use of the paper to the heat transfer community, the authors include, as supplemental material, all numerical and experimental data used in this paper.

Design/methodology/approach

The approach was established on the solution of the inverse heat conduction problem in the wall by using as starting data the temperature measurements on the outer surface. The procedure is based on the CG method with AO. The here proposed approach was first verified adopting synthetic data and then it was validated with real cases regarding pulsating heat pipes.

Findings

An original fast methodology to estimate local convective heat flux is proposed. The procedure has been validated both numerically and experimentally. The procedure has been compared to other classical methods presenting some peculiar benefits.

Practical implications

The approach is suitable for pulsating heat pipes performance evaluation because these devices present a local heat flux distribution characterized by an important variation both in time and in space as a result of the complex flow patterns that are generated in this type of devices.

Originality/value

The procedure here proposed shows these benefits: it affords a general model of the heat conduction problem that is effortlessly customized for the particular case, it can be applied also to large datasets and it presents reduced computational expense.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 10 July 2017

Maria Burke

The purpose of this paper is to outline an early adopter “low energy” domestic dwelling, one of the social houses built by a collaboration between a university, the local council…

Abstract

Purpose

The purpose of this paper is to outline an early adopter “low energy” domestic dwelling, one of the social houses built by a collaboration between a university, the local council. The origins of this project are from the early days of interest in sustainable housing, the 1970s. The dwellings were innovative and built to what became known as “the Salford design” which performed to unusual specifications, using approximately 75 per cent less energy than the UK average for space heating and over 40 per cent less than for houses built to what were then the standard building regulations.

Design/methodology/approach

A qualitative and interpretative stance was deemed to be the most appropriate. Within that lens, interviews were chosen as the primary research instrument.

Findings

A marked feature of the results is the variation in energy consumption by different households. A Salford-designed house could be habitable throughout the year without any space heating at all, comfortable at 10 per cent and very comfortable at 25 per cent of normal consumption.

Originality/value

As there continues to be interest and commitment to reducing energy – not just from the United Kingdom but also on a worldwide scale – the United Nations Conference of the Parties known as COP 22 (2016) met in Morocco to take forward many of the initiatives outlined in the Paris Agreement 2015. It is of interest, then, that the latest set of interviews showed that the houses built to the innovative and original 1970s’ Salford design principles, protected by highly insulated well-sealed envelopes, are even presently functioning at a relatively low energy threshold.

Details

Construction Innovation, vol. 17 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 552