
Deep neural network prediction
for effective thermal conductivity
and spreading thermal resistance

for flat heat pipe
Myeongjin Kim

Department of Hydrogen and Renewable Energy,
Kyungpook National University, Daegu, Republic of Korea, and

Joo Hyun Moon
Department of Mechanical and Aerospace Engineering,

Sejong University, Seoul, Republic of Korea

Abstract
Purpose – This study aims to introduce a deep neural network (DNN) to estimate the effective thermal
conductivity of the flat heat pipe with spreading thermal resistance.
Design/methodology/approach – A total of 2,160 computational fluid dynamics simulation cases over
up to 2,000W/mK are conducted to regress big data and predict a wider range of effective thermal
conductivity up to 10,000W/mK. The deep neural networking is trained with reinforcement learning from 10–
12 stepsminimizing errors in each step. Another 8,640 CFD cases are used to validate.
Findings – Experimental, simulational and theoretical approaches are used to validate the DNN estimation
for the same independent variables. The results from the two approaches show a good agreement with each
other. In addition, the DNNmethod required less time when compared to the CFD.
Originality/value – The DNN method opens a new way to secure data while predicting in a wide range
without experiments or simulations. If these technologies can be applied to thermal and materials
engineering, they will be the key to solve thermal obstacles that many longing to overcome.

Keywords Computational fluid dynamics, Effective thermal conductivity, Flat heat pipe,
Neural network, Thermal system design

Paper type Research paper

Nomenclature
Ac = heatsink area, m2;
Ah = heater area, m2;
Ai = interfacial material area, m2;
Bi = Biot number;
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b = bias function;
CFD = Computational fluid dynamics;
DNN = Deep neural network;
dc = equivalent heatsink diameter, m;
dh = equivalent heat source diameter, m;
E = entalphy, J;
f = activation function.
g = thermal resistance function;
h = heat transfer coefficient, W/m2K;
keff = effective thermal conductivity, W/mK;
MAPE = mean absolute percentage error, %;
N = number of data point;
Q = heat power, W;
q" = heat flux, W/m2;
ReLU = rectified linear unit;
RMSE = root mean square error, K/W;
R = spreading thermal resistance, calculated with CFD, K/W;
RCu = spreading thermal resistance of copper by measurement, K/W;
Rc = thermal resistance of heatsink by measurement, K/W;
RDNN = spreading thermal resistance, estimated with DNN, K/W;
Rest = spreading thermal resistance, estimated equation (14), K/W;
Rh = thermal resistance of heater by measurement, K/W;
Ri = thermal resistance of interfacial material by measurement, K/W;
RSNN = spreading thermal resistance, estimated with SNN, K/W;
SNN = Shallow neural network;
Tanh = hyper tangent function;
Th = average heat source temperature, K or oC;
T c = average heat source temperature, K or oC;
T = temperature, K or oC;
Tmc = heatsink temperature by measurement, K or oC;
Tmh = heater temperature by measurement, K or oC;
t = thickness, m;
tc = distance between heatsink surface and thermocouple, m;
th = distance between heater surface and thermocouple, m;
ti = thickness of interfacial material, m;
w = weight for input value;
x = input value;
y = output value by simulation;
ŷ = output value by neural network; and
z = weighted output value.

Greek symbols
« = dimensionless heat source radius, dh/dc;
l = dimensionless parameter, p þ 1/(

ffiffiffiffi
p

p
« );

r = density, kg/m3;
t = dimensionless plate thickness, t/dc; and
U = dimensionless parameter,�.
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1. Introduction
Developing an optimal thermal design for an electric vehicle or a computer chip is critical as
the need for them has risen, but the lifetime of devices shortens with use (Lewis et al., 1996;
Lewis, 2004, 2016). Their temperature needs to be controlled to stay in the desirable range.
Therefore, the demand for thermal engineering has gone up (Navti et al., 1997; Lewis and
Sukirman, 1994; Teimouri and Behzadmehr, 2020). A conductive device for a heat sink is
studied to lower the temperature. Vapor chamber, heat spreader, heat pipe and thermal
ground plane have been shown to be excellent examples of substituting copper solids
because they have a higher effective thermal conductivity (Bar-Cohen et al., 2015; Chang and
Hung, 2019). A flat heat pipe is wide but thin. The heat from a small-size heater can be
delivered to a large heatsink area. Due to the nature of the flat heat pipe, the high spreading
thermal resistance is inevitably generated. Heat pipe design should aim at lowering the
spreading thermal resistance.

There are many variations, such as the flat heat pipe (Chen et al., 2019; Zhu et al., 2020),
vapor chamber (Liu et al., 2018; Zhou et al., 2019; Yang et al., 2021), thermal ground plane
(Moon et al., 2021b) and heat spreader (Tsai et al., 2013), used to minimize the spreading
thermal resistance. In this study, these variations are united “the flat heat pipe”. A small
amount of working fluid, such as DI water, flows in a flat pipe to allow phase change heat
transfer from boiling to condensation. Also, a higher convective heat transfer by the
working fluid can be added (Moon et al., 2021a). However, when designing a thermal system,
wick or rib structures in the flat heat pipe are not the primary consideration. Regardless of
the internal shape, heat pipes look similar outside. They can be square or rectangular for
convenience. Their thickness is usually within 5mm. (Liu et al., 2018). To optimize the
thermal design, heatsink area, thickness, heater area and effective thermal conductivity are
key parameters. More research is required to link the actual thermal system design to
the flat heat pipe. However, applying the parameters of the spreading thermal resistance to
the actual cooling devices is complex in estimating the effective thermal conductivity.

Many kinds of literature on the flat heat pipe have investigated effective thermal
conductivity under different conditions. Zhou et al. (2019) showed the effective thermal
conductivity model of copper vapor chambers. The spatial distribution of temperature was
reported for different effective thermal conductivities. They also compared the thermal
conductivity model with fabricated vapor chambers with different wick structures. Zhu et al.
(2020) obtained a correlation of the effective thermal conductivity of a flat heat pipe.
Effective thermal conductivity with different sizes were predicted based on the measured
thermal resistance. Wang (2010) introduced a vapor chamber concept replacing the metal
base plate, a multiphase heat transfer between water and vapor to apply to the graphic
processing unit (GPU) of a smaller area with high power density. The optimal total thermal
resistance of the vapor chamber is obtained with different power densities. Yang et al. (2021)
introduced an effective thermal conductivity model for an ultrathin vapor chamber.
Integration of hydrophilic and hydrophobic surfaces inside the chamber allowed a
lower spreading thermal resistance and a calculated effective thermal conductivity up to
11,915W/mK. The literatures discussed above mentioned an effective thermal conductivity
model related to the spreading thermal resistance. The models have not reflected the
conduction and convection heat transfer. The correlative models on the effective
thermal conductivity were based on the bulk thermal resistance (Lee et al., 1995; Song et al.,
1994), considering only the morphology. As the temperature distribution of a solid changes
depending on the convective heat transfer of heatsink, this physics should be
comprehensively considered. For example, the bulk material resistance reaches the order of
10e�6 K/W, which is quite smaller than the estimated value of spreading thermal resistance
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of the order of 0.1 K/W (Lee et al., 1995; Song et al., 1994; Moon et al., 2021b), leading to an
overestimation.

For the flat heat pipe, it is known that a high temperature is expected at the heater, and a
lower temperature is measured at the heatsink (Zhou et al., 2019). It is hard to measure the
effective thermal conductivity in experiments, but a conduction and convection heat transfer
can be estimated simultaneously using a simulation tool that model the parameter correctly.
Moon et al. (2021b) used the computational fluid dynamics (CFD) to show the correlation
between the effective thermal conductivity and spreading thermal resistance. However, a
small sample of the simulation was reported to a heater 10� 10 mm2 in size and a heatsink
of 80� 80 mm2, and a single size was used for a small range of effective thermal
conductivity. Various sizes of the flat heat pipes should be studied to analyze the spreading
thermal resistance and effective thermal conductivity up to 10,000W/mK. Zhou et al. (2019),
Zhu et al. (2020) and Yang et al. (2021) reported the high effective thermal conductivity.

Recently, machine learning with a neural network has been rigorously used to get a more
accurate regression model on the effective thermal conductivity or other crucial parameters
of the thermal systems. Jamei et al. (2021) predicted the thermal conductivity of nanofluids
with a neural network. Using 400 data sets, the classification map of the effective thermal
conductivity of nanofluid was presented for the shallow neural network (SNN) and neural
network with the filter training algorithm. Jiang and Zhao (2013) predicted the critical heat
flux of the flow boiling phenomena using a neural network from 513 to 24,781 data sets. The
SNN and hybrid neural network model with statistical learning theory were compared. Lee
et al. (2020) provided the hidden layer effect on the prediction of heating energy consumption
in old houses. The accuracy improved as the number of hidden layers increased when
studied with 16,158 data sets. What neural network modelings have in common is that their
prediction accuracy rose along with the number of datapoints. More studies are needed to
investigate the relationship between the shallow or deep network architectures and the
number of data sets, as there is still a lack of research on thermal system design, particularly
with the flat heat pipe. Future works should look at the number of data sets required for
neural networkmodeling suitable for thermal system design.

Therefore, the major objective of this investigation is to estimate the effective thermal
conductivity of flat heat pipes of different morphologies and operating conditions by using a
deep neural network (DNN) model. For flat heat pipe (FHP), it is a multi-linear case which is
not dominated by a single variable. The DNN model first learns CFD data and then comes
up with a new DNN model in steps. When a new DNN model is developed, the thermal
resistanceR can be predicted when a new input variable (keff,Ac,Ah, t and h) is given.

Wewill first obtain the big data in a specific range via CFD results (100# keff# 2,000W/mK,
where keff is effective thermal conductivity), then the DNN regression proceeds to predict in a
range broader by five times (2,000# keff # 10,000W/mK). Validation via CFD will also be
performed for the same range (2,000# keff # 10,000W/mK). When the models from the DNN
and CFD results are compared, the difference is small. When compared with Lee et al.’s
mathematical model (Lee et al., 1995), the DNN result is a good fit. In conclusion, the DNN
method opens a newway to secure data while predicting in a wide range without experiments or
simulations. If this technology can be applied to thermal and materials engineering, they will be
the key to solve thermal obstacles thatmany longing to overcome.

2. Numerical methods
2.1 Computational fluid dynamics
Ansys Fluent is used in this study to investigate the flat heat pipe with various effective
thermal conductivities on the basis of the straightforward and generic model shown in
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Figure 1. A flat heat pipe is investigated without considering gravity. Heating areas, Ah,
have 10� 10 mm2 and 25� 25 mm2. In addition, flat heat pipes are selected to simulate
heatsinks with different sizes, Ac, including 60� 60 mm2, 90� 90 mm2 and 120� 120 mm2.
A detailed simulation input map is shown in Table 1.Thermal conductivity increasing by
100W/mK, from 100W/mK to 10,000W/mK, are used with three heat transfer coefficients
(100W/m2K, 500W/m2K and 1,000W/m2K). Heat inputs at the heater are fixed as 1MW/m2.
Various thicknesses are adopted to cover flat heat pipes used in real applications. Therefore,
a total of 10,800 cases (2� 3 � 100� 3 � 6) run in a row using Fluent. For the regression
learning in a neural network, 2,160 simulations with effective thermal conductivity ranging
from 100 to 2,000W/mK are used. The rest of 8,640 cases are used for validation with DNN.

The three-dimensional and steady-state conditions are used. The uniform convective
heat transfer h is applied to reflect the actual heatsink specifications. The cold plate using
the water circulation has h of � 1,000W/m2K, when R � 1/hAc, and a heatsink with air
cooling is the order of h � 100W/m2K (Lee et al., 1995; Moon et al., 2021b; Zhou et al., 2019).
With the heatsink, the ambient temperature is 25°C, where sidewalls are insulated. Grid
dependency tests are made to from 3,000,000 to 10,000,000 hexagonal cells. At the heatsink,
the heat transfer coefficient is evenly set, and the reference temperature is set as 40°C.

The thermophysical properties are presumed to be steady at different temperature
conditions, and the density (8,900 kg/m3) and specific heat (390 J/kgK) are set as same as
copper. For mass conservation in CFD, the equations for the steady-state are used (Ansys,
2022; Lewis et al., 1996; Lewis, 2004, 2016):

r � r v!
� �

¼ 0; (1)

where there is no source term in equations (1) and (2). The energy conservation equation is
used to solve the conduction heat transfer:

Figure 1.
Flat heat pipe domain

Table 1.
Simulation overview

Cases
Ac (3 cases)

60� 60 mm2 90� 90 mm2 120� 120 mm2

Ah
(2 cases)

10� 10 mm2 keff = [100:100:10,000 W/mK] (100 cases)
and

t = [0.5, 1, 2, 3, 4, 5] mm (6 cases)
and

h = 100 W/m2K, 500 W/m2K and 1,000 W/m2K (3 cases)

25� 25 mm2
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r � keffrTð Þ ¼ r � r v!E
� �

; (2)

where keff is the effective thermal conductivity. All results are solution-converged data based
upon the energy residual, which becomes less than 10�18 to ensure a mature simulation.
Text User Interface (TUI) of Fluent was used for different material properties and
boundary conditions such as thickness. Most CFD codes provide journaling macro functions
in the C-language. The TUI code is automatically generated for easier understanding
regardless of users’ proficiency. Figure 2 shows the pseudo-code for the macro function
(Kim et al., 2022).

2.2 Experimental set-up
To verify the CFD, the thermal resistance of the pure copper sheet (� 400W/mK) is also
measured via experiments. Figure 3(a) is the schematic of the experimental set-up from the
heater to the heat sink. Thicknesses of 1mm, 2mm and 3mm and the heater sink area of
60� 60 mm2 and 90� 90 mm2 are used. Copper 101 sheet, which meets the specification of

Figure 2.
Pseudo-code example

Figure 3.
(a) Schematic of
experimental set-up;
(b) Thermal
resistance map of a
FHP
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ASTM F68, is used. Three cartridge heaters for a maximum power of 150W each are
embedded in a big copper block with a height of 50mm to allow a uniform heating area of
25� 25 mm2. Power is fixed as 100W, using a power supply. Insulation of the calcium
silicate board is enclosed near the heater. Thermal greases (Tgrease, Laird) that is applied
between the heat sink and the copper sheet, and the copper sheet and the heater are used for
a close contact. It has a thermal conductivity of 1.2W/mK, where the thermal resistance
appears to be 0.01K/W with a heat sink area of 90� 90 mm2 and a layer thickness of
100 mm (Moon et al., 2021b).

A hole, 1mm in diameter, is drilled at 5mm from the surface of the heater and heat
sink and three thermocouples are inserted to each to extrapolate Tmc and Tmh. The
temperatures are gathered by data acquisition systems (RDXL12SD, Omega) for 10min to
gain a steady state. The special limit of T-type thermocouples (TT-T-30-SLE-100, Omega) is
used. The heatsink with a blower (VC-200, ATS) has the minimum thermal resistance of
0.2K/W, and the heat transfer coefficient can be controlled up to 1,000W/m2K, with a power
supply (GPR-3060D, Gwinstech). When repeated for ten times, the calculated maximum
uncertainties in the reported temperature and thermal resistance values are 4.04% and
5.01%, respectively. Specifically, the measurement error for the thermocouples is 0.4%, and
the change in the copper plate is 0.51%. Uncertainty of the input voltage and current
uncertainty is 0.5%. Uncertainties are obtained byMoffat (Moffat, 1988):

dT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

@Ti

@xi
d xi

� �2

vuuut

and

dR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

@R
@xi

d xi

� �2

vuuut : (3)

2.3 Neural network regression
To estimate the required effective thermal conductivity related to the spreading thermal
resistance of the FHP, the Shallow or DNN approach is used with MATLAB via theMachine
Learning ToolBox (MathWorks, 2022). Network structure, the activation function and the
learning algorithm are the major components. The default neural network model has a
structure shown in Figure 4. This leads to a certain number of inputs of x = [Ac, Ah, keff, h]
and a bias value b (MathWorks, 2022; Tausendschøn and Radl, 2021; Lee et al., 2020; Solgi
et al., 2017) for an output value ŷ. When an input layer is activated, it is calculated with a
weight w = [w1, w2, w3, w4, w5]. If a neuron has five inputs, it considers the same number of
weights during learning time shown in equation (4). The activation function f(z) should be
able to handle the non-linear tendency of the data. This function gives the optimal value to
reduce errors between 0 and 1, as shown in equation (5) below.

z ¼ Ac*w1 þ Ah*w2 þ t*w3 þ keff*w4 þ h*w5 þ b; (4)
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ŷ ¼ f zð Þ: (5)

There are many examples of an activation function, such as ReLU (rectified linear unit) in
equation (6) or Tanh in equation (7), to obtain the appropriate output value of the spreading
thermal resistance R (MathWorks, 2022; Tausendschøn and Radl, 2021; Lee et al., 2020; Solgi
et al., 2017). The application of the loss function, activation function, bias and weight for the
output can be operated byMachine Learning Toolbox.

ReLU zð Þ ¼ 0 for z < 0
z for z � 0

;

�
(6)

Tanh zð Þ ¼ 2
1þ e�2z � 1: (7)

When learning the data, the activation functions should be chosen depending on the
convergence and accuracy as the CFD results are non-linearly distributed (MathWorks,
2022; Tausendschøn and Radl, 2021; Lee et al., 2020; Solgi et al., 2017). In Figure 4, the input
layer corresponds to the predictor data such as the effective thermal conductivity, heatsink
area, heater area, thickness and heat transfer coefficient. The initial layer has resulted from
2,160 cases to the fully connected (FC) hidden layer, and it is judged by the activate function
and filtered by the second or third FC layer to make an output of the spreading thermal
resistance (MathWorks, 2022). A total of 3,000 iterations are performed to get a precise NN
prediction.With the iterations of 1,000 and 2,000, the result fluctuates greatly, but in the case
of 3,000 iterations, the data prediction converges to less than 0.3% deviation for several
runs. The output value of the thermal resistance is returned by the weight or the biases in
FC.

In Figure 4, the effect of the hidden layer on the neural network is shown. The SNN deals
only with one hidden layer, and a premature convergence is expected. On the other hand, the
DNN understands the complex non-linear pattern from the input and output layers
considering the backpropagation. The non-linear tendency from input and output layers can

Figure 4.
Neural Network with
hidden layers
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be validated in hidden layers (Chauhan et al., 2019; Løhner et al., 2021). As research on the
thermal regression with the hidden layer effect have been lacking, this study will look at
those afterwards. In the DNN, 50, 30, and 20 nodes are chosen for the first, second, and third
layers, respectively, whereas the SNN has only 50 nodes.

The prediction procedure in this study is shown in Figure 5(a) and 5(b). The first presents
the prediction and validation procedure with the DNN. The CFD data with the
effective thermal conductivity up to keff = 2,000W/mK is completed to get the DNN
regression. The initial input values in CFD are given in Table 1. The neural network model
cannot generate a mathematical equation in MATLAB, but the output can return when the
data is entered. The validation process for all data is made in each step. The average error
between the original data and the prediction should be minimal for each step to ensure a
minor deviation in the final step. As a large error or an outlier can exist, 15% of original data
can be neglected in the next step to eliminate the possibility of greater errors in the next step.
DNN regression is retrained for reinforcement learning to predict in a broader range based
on the refined original data and the new one (Liu et al., 2021). The newly introduced data
should be in the broader range of the effective thermal conductivity above 15% to 25%.

Four approaches are shown in Figure 6. Case 1 is the direct prediction to keff =
10,000W/mK by the neural network regression based on that keff = 2,000W/mK. Case 2 is
the prediction without reinforcement learning in twelve steps. In each step, the effective
thermal conductivity increases by 15%. Case 3 uses the reinforcement by appending
original data by 125% (keff = keff �125%). Case 4 deals with more steps than Case 3 by
appending original data by 115% (keff = keff �115%). Finally, the case studies are
validated with CFD results when keff = 10,000W/mK or the correlation equation of Lee
et al. (1995), Song et al. (1994). All first step uses the DNN regression for simulation data
with the effective thermal conductivity ranging from 0 to 2,000W/mK. The CFD by
Fluent and the neural network algorithm by MATLAB are performed using IntelVR Core
TM i7 CPU with NVIDIAVR 2060 Super GPU.

Figure 5.
Prediction procedure
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3. Results and discussion
3.1 Spreading thermal resistance by computational fluid dynamics
For the flat heat pipe, it is known that the highest temperature of the heater is found at the
center, and a lower temperature is measured at the heatsink, which has a broader area.
When the heat flows, resistance changes as the size of the heatsink differs. This resistance is
called spreading resistance or spreading thermal resistance (Lee et al., 1995). It is assumed to
be identical to the average value of the flat heat pipe (Lee et al., 1995). The spreading thermal
resistance can be defined as follows:

R ¼ Th � T c

� �
=Q; (8)

where Th and T c is the average temperature measured at the heater and heatsink,
respectively. The Q is the heat power of the heat source. Figure 7 depicts the effective
thermal conductivity tendency with different spreading thermal resistance, thickness,

Figure 6.
Numerical
approaches to
estimate the effective
thermal conductivity

Figure 7.
Spreading thermal
resistance with
different heatsink
areas
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and heatsink area. Results from simulations are based on the heat transfer coefficient of
1,000W/m2K of the heater area with the size of 25� 25 mm2. Effective thermal
conductivity up to 2,000W/mK is presented considering the reference values of
aluminum, copper, and diamond: approximately 200W/mK, 400W/mK, and 2,000W/mK,
respectively. It is crucial to compare the spreading thermal resistance with that of copper
and diamond for the range of flat heat pipe and the first regression.

Figure 7(a) and 7(b) show that the increase in effective thermal conductivity leads to a
decrease in the spreading thermal resistance, indicating effective heat spread over the heat
sink. Even though the spreading thermal resistance is the same, the high effective thermal
conductivity makes a higher radial heat transfer. For example, when the spreading
thermal resistance is 0.2 K/W and t = 1mm, the effective thermal conductivity reaches
340W/mK, 482W/mK, and 668W/mK for the heater area of 60� 60 mm2, 90� 90 mm2, and
120� 120 mm2, respectively. The effective thermal conductivity can also sharply rise
with a drop in spreading thermal resistance. Between 0.2K/W and 0.06K/W when
Ac = 90� 90 mm2, the effective thermal conductivity can go up from 340W/mK to
2,000W/mK. When the thickness is larger because of internal structures like capillary
wicks, the effective thermal conductivity can be decreased, which is not applicable and
suitable. A similar tendency is found when t = 1mm and t = 5mm, as shown in Figure 7(a)
and 7(b). It is proven that a larger heatsink area is required. In addition, the total thickness of
the flat heat pipe should be as small as possible.

The spreading thermal resistance of the copper sheet (RCu) can be obtained by one-
dimension conduction following equation (9).

RCu ¼ Tmh � Tmc

Q
� Rc � 2Ri � Rh ¼ Tmh � Tmc

Q
� tc
kcAc

� 2ti
kiAi

� th
kAlAAl

(9)

In Figure 7(a) and 7(b), the thermal resistance values by measurement are matched with the
simulation data for different thicknesses and heatsink areas. In equations (1) and (2), the
governing equation of CFD simulation is not complex and the accuracy of the simulation can
be guaranteed. The spreading thermal resistance for t = 2mm and Ac = 60� 60 mm2 and
90� 90 mm2 for a copper sheet is 0.096K/W and 0.14K/W, respectively. Also, the
simulation results for the same conditions are 0.096K/W and 0.133K/W, showing a good
agreement. Therefore, an average difference of 1.5% can be found, considering the
maximum uncertainty of 5.01%.

3.2 Hidden layer effect on neural network regression
Figure 8 shows the effect of the hidden layer on estimating the spreading thermal resistance.
Instead of the effective thermal conductivity, comparing the spreading thermal resistance is
more straightforward, as this parameter can be obtained by differing temperatures in
experiments or via numerical analysis. The SNN and DNN with three hidden layers are
compared in Figure 8(a) and 8(b), respectively. To compare the effect of the DNN accuracy,
the mean absolute percentage error (MAPE) and the root mean square error (RMSE) are also
compared as shown in equations (10) and (11) below:

MAPE ¼ 100
N

XN
i¼1

�� yi � ŷi
yi

��; (10)
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

yi � ŷið Þ2=N
vuut ; (11)

where i is variable, N is the number of data points, yi is simulation data, and ŷi indicates the
estimated value by DNN. The dashed line indicates the 10% MAPE from the simulation
results. All neural network regression can fall in 10% error, and higher accuracy is found
with DNN. The mean absolute percentage error of SNN and DNN is 6.9% and 1.1%,
respectively.

In particular, the activation function of Tanh is used, as the ReLU shows a poorer
accuracy of 4.0% with the DNN. As the derivative of ReLU becomes monotonic, a
classification issue arises because this activation function overfits the data among many
simulation results (Astola et al., 2021; Jamei et al., 2021).

RMSE is found to be 0.0025 K/W and 0.0003 K/W for SNN and DNN, respectively,
showing a higher prediction performance with DNN. It is well known that the RMSE
can increase with the number of data points (Astola et al., 2021). In the hidden layer,
there is a loss function calculating the difference between the prediction value of the
neural network model and the actual value. The neural network algorithm uses the
loss value in backpropagation to correct the weight where it is made. The weight
correction in nodes in layers of the neural network is called learning (Lim, 2020;
Astola et al., 2021). For reinforcement learning in this study, the loss values can be
reduced in advance by removing data that greatly deviate by approximately 15% in
each step in the DNN. In addition, the previous data to be regressed is always larger
than the new data to be learned, therefore the prediction does not deviate much in this
study.

Therefore, the loss values can drop with a rise in the number of layers. However, having
four or more hidden layers is not recommended as discussed in Lim (2020) as it can overfit
the training data. The optimal number of hidden layers should be carefully chosen for a
higher accuracy.

Figure 8.
Hidden layer effect
for estimation of
spreading thermal
resistance (keff<
2,000W/mK)
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3.3 Estimation and validation of deep neural network
Figure 9 shows several neural network methods to obtain an accurate prediction up to when
keff = 10,000W/mK. Simulation data for the same independent variables are used for the
validation. All graphs are presented for the range between 0.001K/W and 0.1K/W, as it
covers the range of effective thermal conductivity from 2,000W/mK to 10,000W/mK. This
study compares 8,640 simulation results under the same input conditions. The graph
indicates the accuracy of different prediction approaches. In Figure 9(a) of case 1, the direct
prediction of keff = 2,000W/mK from the regressed model shows a poor estimation up to
500% error. Most data does not fit in the 10% deviation, and the estimated value can be
negative. As regression is carried out for the small ranges, the prediction cannot be used
directly for values higher by five or more times. Even though the regression shows a good
fit, the bias and weight are learned by local input values, making a higher deviation in
estimation. In Figure 9(b), the prediction without reinforcement learning is still poor, and the
tendency is quite different from Figure 9(a). In this case, the first step shows a deviation of
only 1.1% from simulated data when keff goes up to 2,300W/mK. The deviation

Figure 9.
Several deep neural
network prediction

approaches to
estimate keff<
10,000W/mK
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exponentially increases and backpropagation fails, leading to a overfit in the final step. Case
3 and 4 in Figure 9(c) and 9(d) showmore accurate results with near 10% deviation, showing
the effect of reinforcement learning.

The learning process may be effective, but a higher accuracy can be found with 115%
reinforcement, as shown in Case 4. The first estimation shows the same deviation of 1.1% in
Case 2. The error does not deviate much in steps and maintains a low estimation value,
showing an excellent performance up to keff < 10,000W/mK. Even with reinforcement
learning, outliers can be found, but reliable data will appear with a higher prediction
accuracy.

Figure 10 shows the SNN to estimate keff < 10,000W/mK. Reinforcements of 25% and
15% by SNN are also presented. However, an average error of up to 35% can be found even
with the 15% reinforcement. Even though 15% of error has been removed in each step, still
all existing data are predicted with a significant deviation. This is because the errors have
been accumulated in every step due to SNN. Therefore, a minimal handling error of around
1% is required as shown in Figure 8(b) to ensure estimation accuracy. Also, a number of
data should be ensured for accuracy.

Figure 11 shows the MAPE for each step up to keff = 10,000W/mK. From the DNN
regression, all twelve steps are presented. All calculated data can be controlled in 10% line,

Figure 10.
SNN prediction
approaches to
estimate keff<
10,000W/mK by SNN
with (a) 25%
reinforcement (b)
15% reinforcement

Figure 11.
MAPE for each step
for 15%
reinforcement of
DNN
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due to reinforcement learning. The effective thermal conductivity up to 2,000W/mK should
be learned in every step to ensure the accuracy of the DNN estimation. The increasing error
trend for each step is inevitable because of an increase in uncertainty. This can be solved by
reducing the size of each step. However, if it is reduced, the amount of data that needs to be
learned increases, taking more time to compute which is not feasible. Therefore, it is
necessary to select an optimal size of each step and data amount to keep the computation
time to a minimumwhile maintaining the standard of uncertainty to be less than 10%.

3.4 Theoretical model comparison
DNN prediction model validated with simulations is compared again with the analytical
model in Lee et al. (1995). For square-shaped heat pipes, the equivalent heat source diameter
dh and heatsink diameter dc can be obtained:

dh ¼
ffiffiffiffiffiffi
Ah

p

r
(12)

dc ¼
ffiffiffiffiffiffi
Ac

p

r
(13)

whereAh is the heater area, andAc is the heatsink area. The spreading thermal resistance of
the flat heat pipe can be calculated by the correlation below:

R ¼
«tffiffiffi
p

p þ 1
2 1� «ð Þ1:5Uffiffiffiffi
p

p
keffdh

(14)

U ¼ tanh l tð Þ þ l
Bi

1þ l
Bi tanh l tð Þ (15)

where l = p þ 1/(
ffiffiffiffi
p

p
« ), and « is the dimensionless radius (= dh/dc). t is the thickness of

the dimensionless plate (= t/dc). The Biot number is proposed for the conduction and
convective heat transfer in equation (16) as follows:

Bi ¼ hdc
keff

(16)

This model has an accuracy of approximately 10% in estimating the effective thermal
conductivity using a heatsink for conventional metals (Lee et al., 1995). If the spreading
thermal resistance is known, the effective thermal conductivity can be calculated with an
inverse function shown below:

keff ¼ g�1 Rð Þ: (17)

For the 10,800 simulation cases, the simulation results and the DNN regression model are
compared with the same dependent variables with the equation (14) and the outcomes are
shown in Figure 12(a) and 12(b). In equation (14), the model works when the heatsink
area is larger than the heater area (Ac > Ah). The MAPE of 10.8% and 9.7% are found in
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Figure 12(a) and 12(b). The DNN results show a better estimation when compared to the
simulation. Above 90% of the data is bounded by a 10% deviation line for two validation
methods. In addition, the partial ranges up to keff < 2,000W/mK shown in Figures 8 and 9
have a good agreement. During the steps shown in Figure 11, all results fitted within 10%
with equation (17).

Therefore, the DNN estimation using reinforcement learning helps to predict the effective
thermal conductivity. This method can estimate from known values by filtering non-
predictable data and controlling minor errors. Even though the current study does not
consider the effect of data amount, it is necessary to investigate the relation between the
number of hidden layers, step size, and reinforcement learning approach for various thermal
issues. With DNN, the effective thermal conductivity can be estimated by obtaining the
spreading thermal resistance. Table 2 shows the summarized results via DNN, assuming
h = 1,000 W/m2K, Ah = 10� 10 mm2, and Ac = 90� 90 mm2. There is a small difference
between the simulations and DNN results under the same condition. The regression and the
reinforced DNN model appropriately proceed to estimate the effective thermal conductivity
of the flat heat pipe. Another advantage of DNN is that it can significantly reduce

Figure 12.
Estimation of
spreading thermal
resistance based on
Lee et al. (1995)

Table 2.
Effective thermal
conductivity by
spreading thermal
resistance obtained
by DNN

Category

DNN results
at Ac = 90� 90 mm2 and Ah = 10� 10 mm2 Simulated results

t [mm] 0.5 1 2 3 4 5 1
keff [W/mK] R [K/W]

Regressed DNN 200 1.478 0.914 0.549 0.412 0.342 0.302 0.914
400 0.900 0.524 0.298 0.218 0.178 0.155 0.525

2,000 0.231 0.122 0.065 0.046 0.037 0.032 0.122
Reinforced DNN
(prediction)

3,000 0.158 0.082 0.043 0.031 0.025 0.021 0.082
4,000 0.120 0.062 0.033 0.023 0.019 0.016 0.062
7,000 0.070 0.036 0.019 0.013 0.011 0.009 0.036
8,000 0.062 0.031 0.016 0.012 0.009 0.008 0.031
10,000 0.049 0.025 0.013 0.009 0.007 0.006 0.025
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computation time. With MATLAB, the calculation takes less than 8 h with 10–75min for
each step, whereas CFD takes 260 h to calculate 8,640 cases with Fluent for the same parallel
computing. Having a similar accuracy, there is a big difference in the computational
efficiency.

4. Conclusions
This study uses the DNN algorithm to investigate the effective thermal conductivity
estimation for flat heat pipes with different conditions. The conclusions are as follows:

� Big data by CFD are established for the effective thermal conductivity up to
2,000 W/mK. Flat heat pipes with different heatsink areas, heater areas, heat
transfer coefficients and thicknesses are numerically studied. The validations are
made between experiments and simulations for the copper solid.

� The effect of the hidden layers is also examined by comparing the SNN and DNN
with the big data. While both show an acceptable accuracy, the DNN is found to be
more advantageous with backpropagation.

� The effective thermal conductivity with different spreading thermal resistance is
estimated up to 10,000 W/mK by using the DNN. Reinforcement learning maintains
fewer errors by removing the worst 15% of data in each step. By comparing
the simulation results, theory from other literature and the DNN approach to
validate the effective thermal conductivity up to 10,000 W/mK, we can conclude that
the DNN estimation is practical. In addition, DNN regression and estimation can
open new ways to secure data while making predictions in a wide range without
conducting experiments or simulations.
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