Search results

1 – 10 of over 14000
Article
Publication date: 13 November 2023

Meifang Li and Yujing Liu

With the deep development of the new technological revolution and industrial transformation, the development, application, expansion and integration of digital technology provide…

Abstract

Purpose

With the deep development of the new technological revolution and industrial transformation, the development, application, expansion and integration of digital technology provide opportunities for transforming the manufacturing industry from traditional manufacturing to intelligent manufacturing. However, little research currently focuses on analyzing the influencing factors of intelligent development in this field. There is a lack of research from the perspective of the digital innovation ecosystem to explore the intrinsic mechanism that drives intelligent development. Therefore, this article starts with high-end equipment manufacturing enterprises as the research subject to explore how their digital innovation ecosystem promotes the effectiveness of enterprise intelligent development, providing theoretical support and policy guidance for enterprises to achieve intelligent development at the current stage.

Design/methodology/approach

This article constructs a logical framework for the digital innovation ecosystem using a “three-layer core-periphery” structure, collects data using crawling for subsequent indicator measurement and assessment and uses the fuzzy set Qualitative Comparative Analysis method (fsQCA) to explore how the various components of the digital innovation ecosystem in high-end equipment manufacturing enterprises work together to promote the development of enterprise intelligently.

Findings

This article finds that the various components of the digital innovation ecosystem of high-end equipment manufacturing enterprises, through mutual coordination, can help improve the level of enterprise intelligence. Empirical analysis shows four specific configuration implementation paths for the digital innovation ecosystem of high-end equipment manufacturing enterprises to promote intelligent development. The core conditions and their combinations that affect the intelligent development of enterprises differ in each configuration path.

Originality/value

Firstly, this article discusses the practical problems of intelligent transformation and development in the manufacturing industry and focuses on the intelligent development effectiveness of various components of the digital innovation ecosystem of high-end equipment manufacturing enterprises in the context of digitalization. Secondly, this article uses crawling, text sentiment analysis and other methods to creatively collect relevant data to overcome the research dilemma of being limited to theoretical analysis due to the difficulty in obtaining data in this field. At the same time, based on the characteristics of high-end equipment manufacturing enterprises, the “three-layer core-periphery” digital innovation ecosystem framework constructed in this article helps to gain a deep understanding of the development characteristics of the industry's enterprises, provides specific indicator analysis for their intelligent development, opening the “black box” of intelligent development in the industry's enterprises and bridging the gap between theory and practice. Finally, this study uses the fsQCA research method of configuration analysis to explore the complexity of the antecedents and investigate the combined effects of multiple factors on intelligent development, providing new perspectives and rich research results for relevant literature on the intelligent development of high-end equipment manufacturing enterprises.

Details

Business Process Management Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 31 May 2022

Na Lu, Wei Zhou and Zhi Wu Dou

Intelligent manufacturing has attracted extensive attention from national strategy, academic research and enterprises' practices. The purpose of this study is to investigate the…

Abstract

Purpose

Intelligent manufacturing has attracted extensive attention from national strategy, academic research and enterprises' practices. The purpose of this study is to investigate the influence of intelligent manufacturing on performance in manufacturing firms. Moreover, how intelligent manufacturing technology affects enterprise performance, this study provided a practice that can be replicated by other businesses.

Design/methodology/approach

This study uses text mining to collect the intelligence level of Chinese listed companies. It uses quantitative analysis to test the proposed model based on samples of 2,091 manufacturers.

Findings

Intelligent manufacturing has positive effect on short-term performance and long-term performance. Intelligent manufacturing can empower firms with ambidextrous capabilities, including exploit capability and explore capability. Exploit capability has positive effects on short-term performance and long-term performance. Explore capability has negative effects on short-term performance, but has positive effects on long-term performance.

Originality/value

On the theoretical side, it enriches the research framework between intelligent manufacturing and enterprise performance. This study explains the preconditions and results of ambidextrous capabilities. Moreover, based on the practice-based view (PBV), this study proposes that technologies can be used as strategies, filling a gap in the existing research on strategic management. On the practical side, how to quantify the intelligent manufacturing level of enterprises provides a certain reference. Also, this study provides an easy to imitate practice that can serve as a model for under-performing enterprises.

Details

Industrial Management & Data Systems, vol. 123 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 8 January 2020

Yuhong Cao, Jianxin You, Yongjiang Shi and Wei Hu

This paper aims to make a systematic study on the factors that hinder the development of China’s intelligent automobile manufacturing industry; based on comprehensive…

Abstract

Purpose

This paper aims to make a systematic study on the factors that hinder the development of China’s intelligent automobile manufacturing industry; based on comprehensive understanding of these obstacles and by optimization means, ultimately, the healthy and sustainable development of intelligent automobile manufacturing industry in China can be promoted.

Design/methodology/approach

Based on a questionnaire survey of intelligent automobile manufacturing listed companies in China, first, fuzzy semantic scale was adopted to collect respondents’ choices, the fuzzy score function is used to calculate the fuzzy score value and these data are used as the basis for subsequent model analysis. Then, structural equation modeling (SEM) was adopted to analyze the causal relationship between influencing factors to explore the main hinder factors.

Findings

It is found that, in the short term, the backwardness of technological industrialization is the main reason leading to low permeability of intelligent automobile; in the medium term, the imperfect industrial R&D ability and the insufficiency of infrastructure are major causes for high manufacturing cost and low competitiveness of intelligent automobile manufacturing industry; in the long term, the lack of national policy and industrial strategic planning is the main factors affect intelligent automobile manufacturing cost and the industry competitiveness.

Practical implications

The research conclusion has important policy implications for promoting intelligent automobile manufacturing sustainable development. In recent years, China’s intelligent automobile manufacturing industry has gradually stepped out of breeding period; therefore, the role of government should be gradually transformed from participants to managers and regulators. Considering the fact that intelligent automobile cost is very high, and still higher than the cost of fuel vehicle, government should focus on the issues such as improving R&D capabilities, infrastructure construction, policy framework system, legal system and technological industrialization. Specifically, in short-term planning, improving technological industrialization level is the key to development; in medium-term planning, policymakers should focus on the improvement of R&D capabilities and infrastructure; considering the long-term development, establishing appropriate national policies and dealing with the adverse impact of imperfect strategic planning are the most sensible choice.

Originality/value

This paper analyzes the factors that hinder the development of China’s intelligent automobile manufacturing industry for the first time, and provides the basic logic of integration factors at different levels with the development of intelligent automobile to reveal the uniqueness and facts of China’s economic development.

Article
Publication date: 22 August 2023

Jinliang Chen, Guoli Liu and Yu Wang

The purpose of this paper is to examine the nuanced effects of downstream complexity on supply chain resilience, based on portfolio theory and normal accident theory. Intelligent…

Abstract

Purpose

The purpose of this paper is to examine the nuanced effects of downstream complexity on supply chain resilience, based on portfolio theory and normal accident theory. Intelligent manufacturing is considered to clarify their boundary conditions.

Design/methodology/approach

The ordinary least squares regression was conducted, based on the data collected from 136 high-tech firms in China.

Findings

Horizontal downstream complexity has a positive effect on supply chain resilience significantly, while the negative impact of vertical downstream complexity on supply chain resilience is not significant. Contingently, intelligent manufacturing plays a negative moderating role in the relationship between horizontal downstream complexity and supply chain resilience, while it positively moderates the relationship between vertical downstream complexity and supply chain resilience.

Originality/value

This study disentangles the nuanced effects of both horizontal and vertical downstream complexity on supply chain resilience, based on portfolio theory and normal accident theory. It also clarifies their boundary conditions by considering the focal firm's intelligent manufacturing level as the contingent factor.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 8
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 5 June 2020

Victor Chang, Yuanyuan Kate Xu, Jingqi Zhang and Qianwen Xu

The purpose of this paper is to investigate the current situation of China's local valve industry, the maturity of intelligent manufacturing and the way to promote intellectual…

297

Abstract

Purpose

The purpose of this paper is to investigate the current situation of China's local valve industry, the maturity of intelligent manufacturing and the way to promote intellectual development.

Design/methodology/approach

Firstly, a macro analysis of the valve market environment from the domestic and international perspective was conducted. Secondly, online surveys and in-depth interviews were administered to understand the current status of IM development and future development goals. Finally, case studies were conducted to demonstrate whether the hypothesis of the development approach is feasible.

Findings

This study finds that the overall maturity level of the local valve industry is still in the planning stage since the local valve industry lacks concentration and is relatively scattered. In addition, the feasible development approach is dependent on smart devices to improve production efficiency, ensure quality management and effectively control costs.

Research limitations/implications

The research is conducted and focused on the Yangtze River Delta region instead of the whole country, and the size of the sample is small. Therefore, there may be some characteristics omitted in the analysis.

Practical implications

Manufacturers can upgrade to smart manufacturing through intelligent software platforms in order to complete an automatic interaction of data and devices. In addition, manufacturers should complete cross-regional collaborative development through the industrial Internet of things.

Originality/value

There is little or none of research work completed for the development strategy of the valve industry internationally. Therefore, research findings of this area can provide a fundamental understanding of China's local valve industry and contribute to the existing knowledge.

Details

Smart and Sustainable Built Environment, vol. 10 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 1 February 1993

K.C. Chan

The ideas expressed in this work are based on those put intopractice at the Okuma Corporation of Japan, one of the world′s leadingmachine tool manufacturers. In common with many…

1570

Abstract

The ideas expressed in this work are based on those put into practice at the Okuma Corporation of Japan, one of the world′s leading machine tool manufacturers. In common with many other large organizations, Okuma Corporation has to meet the new challenges posed by globalization, keener domestic and international competition, shorter business cycles and an increasingly volatile environment. Intelligent corporate strategy (ICS), as practised at Okuma, is a unified theory of strategic corporate management based on five levels of win‐win relationships for profit/market share, namely: ,1. Loyalty from customers (value for money) – right focus., 2. Commitment from workers (meeting hierarchy of needs) – right attitude., 3. Co‐operation from suppliers (expanding and reliable business) – right connections., 4. Co‐operation from distributors (expanding and reliable business) – right channels., 5. Respect from competitors (setting standards for business excellence) – right strategies. The aim is to create values for all stakeholders. This holistic people‐oriented approach recognizes that, although the world is increasingly driven by high technology, it continues to be influenced and managed by people (customers, workers, suppliers, distributors, competitors). The philosophical core of ICS is action learning and teamwork based on principle‐centred relationships of sincerity, trust and integrity. In the real world, these are the roots of success in relationships and in the bottom‐line results of business. ICS is, in essence, relationship management for synergy. It is based on the premiss that domestic and international commerce is a positive sum game: in the long run everyone wins. Finally, ICS is a paradigm for manufacturing companies coping with change and uncertainty in their search for profit/market share. Time‐honoured values give definition to corporate character; circumstances change, values remain. Poor business operations generally result from human frailty. ICS is predicated on the belief that the quality of human relationships determines the bottom‐line results. ICS attempts to make manifest and explicit the intangible psychological factors for value‐added partnerships. ICS is a dynamic, living, and heuristic‐learning model. There is intelligence in the corporate strategy because it applies commonsense, wisdom, creative systems thinking and synergy to ensure longevity in its corporate life for sustainable competitive advantage.

Details

Industrial Management & Data Systems, vol. 93 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 July 2000

Farid Meziane, Sunil Vadera, Khairy Kobbacy and Nathan Proudlove

Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their…

4647

Abstract

Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence (AI) will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of AI techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different AI techniques to be considered and then shows how these AI techniques are used for the components of IMS.

Details

Integrated Manufacturing Systems, vol. 11 no. 4
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 8 May 2017

Yaqiong Lv and Danping Lin

With the new generation Industry 4.0 coming, as well as globalization and outsourcing, products are fabricated by different parties in the distributed manufacturing network and…

1489

Abstract

Purpose

With the new generation Industry 4.0 coming, as well as globalization and outsourcing, products are fabricated by different parties in the distributed manufacturing network and enterprises face the challenge of consistent planning of semi-finished product in each manufacturing process in different geographical locations. The purpose of this paper is to propose a real-time operation planning system in the distributed manufacturing network to intelligently control/plan the manufacturing networks.

Design/methodology/approach

The feature of the proposed system is to model and simulate large distributed manufacturing networks to streamline the mechanical and production engineering processes with radio frequency identification (RFID) technology, which can keep track of process variants. To deal with concurrency and synchronization, the hierarchical timed colored Petri net (HTCPN) formalism for modeling is selected in this study. This method can help to model graphically and test the discrete events of concurrent operations. Fuzzy inference system can help for knowledge representation, so as to provide knowledge-based decision assistance in distributed manufacturing environment.

Findings

In this proposed system, there are two main sub-systems: one is the real-time modeling system, and the other one is intelligent operation planning system. These two systems are not parallel in the whole systems while the intelligent operation planning system should be embedded in any stage of the real-time modeling system as needed. That means real time modeling system provides the holistic structure of the studied distributed manufacturing system and realize real-time data transfer and information exchange. At the same time the embedded intelligent operation planning system fulfill operation plan function.

Originality/value

This new intelligent real-time operation system realizes real-time modeling with RFID-based HTCPN and smart fuzzy engine to fulfill intelligent operation planning which is highly desirable in the environment of Industry 4.0. The new intelligent manufacturing architecture will highly reduce the traditional planning workload and improve the planning results without manual error interference. The new system has been applied in a practical case to demonstrate its feasibility.

Details

Industrial Management & Data Systems, vol. 117 no. 4
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 18 October 2021

Jiabao Sun, Ting Yang and Zhiying Xu

The increasing demands for customized services and frequent market variations have posed challenges to managing and controlling the manufacturing processes. Despite the…

Abstract

Purpose

The increasing demands for customized services and frequent market variations have posed challenges to managing and controlling the manufacturing processes. Despite the developments in literature in this area, less consideration has been devoted to the growth of business social networks, cloud computing, industrial Internet of things and intelligent production systems. This study recognizes the primary factors and their implications for intelligent production systems' success. In summary, the role of cloud computing, business social network and the industrial Internet of things on intelligent production systems success has been tested.

Design/methodology/approach

Intelligent production systems are manufacturing systems capable of integrating the abilities of humans, machines and processes to lead the desired manufacturing goals. Therefore, identifying the factors affecting the success of the implementation of these systems is necessary and vital. On the other hand, cloud computing and the industrial Internet of things have been highly investigated and employed in several domains lately. Therefore, the impact of these two factors on the success of implementing intelligent production systems is examined. The study is descriptive, original and survey-based, depending on the nature of the application, its target and the data collection method. Also, the introduced model and the information collected were analyzed using SMART PLS. Validity has been investigated through AVE and divergent validity. The reliability of the study has been checked out through Cronbach alpha and composite reliability obtained at the standard level for the variables. In addition, the hypotheses were measured by the path coefficients and R2, T-Value and GOF.

Findings

The study identified three variables and 19 sub-indicators from the literature associated that impact improved smart production systems. The results showed that the proposed model could describe 69.5% of the intelligence production systems' success variance. The results indicated that business social networks, cloud computing and the industrial Internet of things affect intelligent production systems. They can provide a novel procedure for intelligent comprehensions and connections, on-demand utilization and effective resource sharing.

Research limitations/implications

Study limitations are as below. First, this study ignores the interrelationships among the success of cloud computing, business social networks, Internet of things and smart production systems. Future studies can consider it. Second, we only focused on three variables. Future investigations may focus on other variables subjected to the contexts. Ultimately, there are fewer experimental investigations on the impact of underlying business social networks, cloud computing and the Internet of things on intelligent production systems' success.

Originality/value

The research and analysis outcomes are considered from various perspectives on the capacity of the new elements of Industry 4.0 for the manufacturing sector. It proposes a model for the integration of these elements. Also, original and appropriate guidelines are given for intelligent production systems investigators and professionals' designers in industry domains.

Details

Kybernetes, vol. 51 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 June 2021

Ming K. Lim, Weiqing Xiong and Chao Wang

In the last decade, cloud manufacturing (CMfg) has attracted considerable attention from academia and industry worldwide. It is widely accepted that the design and analysis of…

Abstract

Purpose

In the last decade, cloud manufacturing (CMfg) has attracted considerable attention from academia and industry worldwide. It is widely accepted that the design and analysis of cloud manufacturing architecture (CMfg-A) are the basis for developing and applying CMfg systems. However, in existing studies, analysis of the status, development process and internal characteristics of CMfg-A is lacking, hindering an understanding of the research hotspots and development trends of CMfg-A. Meanwhile, effective guidance is lacking on the construction of superior CMfg-As. The purpose of this paper is to review the relevant research on CMfg-A via identification of the main layers, elements, relationships, structure and functions of CMfg-A to provide valuable information to scholars and practitioners for further research on key CMfg-A technologies and the construction of CMfg systems with superior performance.

Design/methodology/approach

This study systematically reviews the relevant research on CMfg-A across transformation process to internal characteristics by integrating quantitative and qualitative methods. First, the split and reorganization method is used to recognize the main layers of CMfg-A. Then, the transformation process of six main layers is analysed through retrospective analysis, and the similarities and differences in CMfg-A are obtained. Subsequently, based on systematic theory, the elements, relationships, structure and functions of CMfg-A are inductively studied. A 3D printing architecture design case is conducted to discuss the weakness of the previous architecture and demonstrate how to improve it. Finally, the primary current trends and future opportunities are presented.

Findings

By analyzing the transformation process of CMfg-A, this study finds that CMfg-A resources are developing from tangible resources into intangible resources and intelligent resources. CMfg-A technology is developing from traditional cloud computing-based technology towards advanced manufacturing technology, and CMfg-A application scope is gradually expanding from traditional manufacturing industry to emerging manufacturing industry. In addition, by analyzing the elements, relationships, structure and functions of CMfg-A, this study finds that CMfg-A is undergoing a new generation of transformation, with trends of integrated development, intelligent development, innovative development and green development. Case study shows that the analysis of the development trend and internal characteristics of the architecture facilitates the design of a more effective architecture.

Research limitations/implications

This paper predominantly focuses on journal articles and some key conference papers published in English and Chinese. The reason for considering Chinese articles is that CMfg was proposed by the Chinese and a lot of Chinese CMfg-A articles have been published in recent years. CMfg is suitable for the development of China’s manufacturing industry because of China’s intelligent manufacturing environment. It is believed that this research has reached a reliable comprehensiveness that can help scholars and practitioners establish new research directions and evaluate their work in CMfg-A.

Originality/value

Prior studies ignore the identification and analysis of development process and internal characteristics for the current development of CMfg-A, including the main layers identification of different CMfg-As and the transformation process analysis of these main layers, and in-depth analysis of the inner essence of CMfg-A (such as its elements, relationships, structure and functions). This study addresses these limitations and provides a comprehensive literature review.

Details

Industrial Management & Data Systems, vol. 121 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 14000