Search results

1 – 10 of 112
Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 October 2023

Nastaran Mosleh, Masoud Esfandeh and Soheil Dariushi

Temperature is a critical factor in the fused filament fabrication (FFF) process, which affects the flow behavior and adhesion of the melted filament and the mechanical properties…

Abstract

Purpose

Temperature is a critical factor in the fused filament fabrication (FFF) process, which affects the flow behavior and adhesion of the melted filament and the mechanical properties of the final object. Therefore, modeling and predicting temperature in FFF is crucial for achieving high-quality prints, repeatability, process control and failure prediction. This study aims to investigate the melt deposition and temperature profile in FFF both numerically and experimentally using different Acrylonitrile Butadiene Styrene single-strand specimens. The process parameters, including layer thickness, nozzle temperature and build platform temperature, were varied.

Design/methodology/approach

COMSOL Multiphysics software was used to perform numerical simulations of fluid flow and heat transfer for the printed strands. The polymer melt/air interface was tracked using the coupling of continuity equation, equation of motion and the level set equation, and the heat transfer equation was used to simulate the temperature distribution in the deposited strand.

Findings

The numerical results show that increasing the nozzle temperature or layer thickness leads to an increase in temperature at points close to the nozzle, but the bed temperature is the main determinant of the overall layer temperature in low-thickness strands. The experimental temperature profile of the deposited strand was measured using an infrared (IR) thermal imager to validate the numerical results. The comparison between simulation and observed temperature at different points showed that the numerical model accurately predicts heat transfer in the three-dimensional (3D) printing of a single-strand under different conditions. Finally, a parametric analysis was performed to investigate the effect of selected parameters on the thermal history of the printed strand.

Originality/value

The numerical results show that increasing the nozzle temperature or layer thickness leads to an increase in temperature at points close to the nozzle, but the bed temperature is the main determinant of the overall layer temperature in low-thickness strands. The experimental temperature profile of the deposited strand was measured using an IR thermal imager to validate the numerical results. The comparison between simulation and observed temperature at different points showed that the numerical model accurately predicts heat transfer in the 3D printing of a single-strand under different conditions. Finally, a parametric analysis was performed to investigate the effect of selected parameters on the thermal history of the printed strand.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2024

Tudor George Alexandru, Diana Popescu, Stochioiu Constantin and Florin Baciu

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand…

Abstract

Purpose

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand orthoses. These orthoses were 3D printed flat, heated and molded to fit the patient’s hand. The advantages of such an approach include reduced production time and cost.

Design/methodology/approach

The study used both experimental and numerical methods to analyze the thermoforming process of PLA parts. Thermal and mechanical characteristics were determined at different temperatures and infill densities. An equivalent material model that considers infill within a print is proposed. Its practical use was proven using a coupled finite-element analysis model. The simulation strategy enabled a comparative analysis of the thermoforming behavior of orthoses with two designs by considering the combined impact of natural convection cooling and imposed structural loads.

Findings

The experimental results indicated that at 27°C and 35°C, the tensile specimens exhibited brittle failure irrespective of the infill density, whereas ductile behavior was observed at 45°C, 50°C and 55°C. The thermal conductivity of the material was found to be linearly related to the temperature of the specimen. Orthoses with circular open pockets required more time to complete the thermoforming process than those with hexagonal pockets. Hexagonal cutouts have a lower peak stress owing to the reduced reaction forces, resulting in a smoother thermoforming process.

Originality/value

This study contributes to the existing literature by specifically focusing on the thermoforming process of 3D-printed parts made from PLA. Experimental tests were conducted to gather thermal and mechanical data on specimens with two infill densities, and a finite-element model was developed to address the thermoforming process. These findings were applied to a comparative analysis of 3D-printed thermoformed wrist-hand orthoses that included open pockets with different designs, demonstrating the practical implications of this study’s outcomes.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2022

Awel Haji Ibrahim, Dagnachew Daniel Molla and Tarun Kumar Lohani

The purpose of this study is to address a highly heterogeneous rift margin environment and exhibit considerable spatiotemporal hydro-climatic variations. In spite of limited…

Abstract

Purpose

The purpose of this study is to address a highly heterogeneous rift margin environment and exhibit considerable spatiotemporal hydro-climatic variations. In spite of limited, random and inaccurate data retrieved from rainfall gauging stations, the recent advancement of satellite rainfall estimate (SRE) has provided promising alternatives over such remote areas. The aim of this research is to take advantage of the technologies through performance evaluation of the SREs against ground-based-gauge rainfall data sets by incorporating its applicability in calibrating hydrological models.

Design/methodology/approach

Selected multi satellite-based rainfall estimates were primarily compared statistically with rain gauge observations using a point-to-pixel approach at different time scales (daily and seasonal). The continuous and categorical indices are used to evaluate the performance of SRE. The simple scaling time-variant bias correction method was further applied to remove the systematic error in satellite rainfall estimates before being used as input for a semi-distributed hydrologic engineering center's hydraulic modeling system (HEC-HMS). Runoff calibration and validation were conducted for consecutive periods ranging from 1999–2010 to 2011–2015, respectively.

Findings

The spatial patterns retrieved from climate hazards group infrared precipitation with stations (CHIRPS), multi-source weighted-ensemble precipitation (MSWEP) and tropical rainfall measuring mission (TRMM) rainfall estimates are more or less comparably underestimate the ground-based gauge observation at daily and seasonal scales. In comparison to the others, MSWEP has the best probability of detection followed by TRMM at all observation stations whereas CHIRPS performs the least in the study area. Accordingly, the relative calibration performance of the hydrological model (HEC-HMS) using ground-based gauge observation (Nash and Sutcliffe efficiency criteria [NSE] = 0.71; R2 = 0.72) is better as compared to MSWEP (NSE = 0.69; R2 = 0.7), TRMM (NSE = 0.67, R2 = 0.68) and CHIRPS (NSE = 0.58 and R2 = 0.62).

Practical implications

Calibration of hydrological model using the satellite rainfall estimate products have promising results. The results also suggest that products can be a potential alternative source of data sparse complex rift margin having heterogeneous characteristics for various water resource related applications in the study area.

Originality/value

This research is an original work that focuses on all three satellite rainfall estimates forced simulations displaying substantially improved performance after bias correction and recalibration.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 February 2024

Sergejs Pavlovs, Andris Jakovičs and Alexander Chudnovsky

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Abstract

Purpose

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Design/methodology/approach

A mini DC EAF was designed, manufactured and installed to study the industrial processes of heating and melting a small amount of melt, being 4.6 kg of steel in the case under study. Numerical modelling of metal melting was performed using the enthalpy and porosity approach at equal values and non-equal values of the solidus and liquidus temperatures of the metal. The EVF of the liquid phase of metal was computed using the large eddy simulation model of turbulence. Melt temperature measurements were made using an infrared camera and a probe with a thermocouple sensor. The melt speed was estimated by observing the movement of particles at the top surface of melt.

Findings

The thermal flux for metal heating and melting, which is supplied through an arc spot at the top surface of metal, is estimated using the thermal balance of the furnace at melting point. The melting time was estimated using numerical modelling of heating and melting of metal. The process started at room temperature and finished once whole volume of metal was molten. The evolution of the solid/melt phase boundary as well as evolution of EVF patterns of the melt was studied.

Originality/value

Numerical studies of heating and melting processes in metal were performed in the case of intensive liquid phase turbulent circulation due to the Lorentz force in the melt, which results from the interaction of electrical current with a self-magnetic field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 12 December 2023

Austin R. Colon, David Owen Kazmer, Amy M. Peterson and Jonathan E. Seppala

A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer…

Abstract

Purpose

A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented.

Design/methodology/approach

Infrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature.

Findings

The experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle.

Originality/value

This work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 October 2022

Ipsit Kumar Dhal, Saroj Kumar and Dayal R. Parhi

This study aims to modify a nature-based numerical method named the invasive weed optimization (IWO) method for mobile robot path planning in various complex environments.

Abstract

Purpose

This study aims to modify a nature-based numerical method named the invasive weed optimization (IWO) method for mobile robot path planning in various complex environments.

Design/methodology/approach

The existing IWO method is quick in converging to a feasible solution but in a complex environment; it takes more time as well as computational resources. So, in this paper, the computational part of this artificial intelligence technique is modified with the help of recently developed evolution algorithms like particle swarm optimization, genetic algorithm, etc. Some conditional logic statements were used while doing sensor-based mapping for exploring complex paths. Implementation of sensor-based exploration, mathematical IWO method and prioritizing them for better efficiency made this modified IWO method take complex dynamic decisions.

Findings

The proposed modified IWO is better for dynamic obstacle avoidance and navigating a long complex map. The deviation of results in simulation and experiments is less than 5.5%, which validates a good agreement between simulation and real-time testing platforms.

Originality/value

As per a deep literature review, it has found that the proposed approach has not been implemented on the Khepera-III robot for smooth motion planning. Here a dynamic obstacle mapping feature is implemented. A method to selectively distribute seeds instead of a random normal distribution is also implemented in this work. The modified version of IWO is coded in MATLAB and simulated through V-Rep simulation software. The integration of sensors was done through logical conditioning. The simulation results are validated using real-time experiments.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

10

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 April 2024

Muhammad Abas, Tufail Habib and Sahar Noor

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D…

Abstract

Purpose

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.

Design/methodology/approach

In this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.

Findings

The results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.

Originality/value

This study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

1 – 10 of 112