Search results

1 – 10 of 131
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 June 2022

Vinícius Barbosa Henrique and Marlene Salete Uberti

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost…

42

Abstract

Purpose

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost of remotely piloted aircraft systems (RPAS), on-site visits are still used to complete the cadastral form. Thus, this work aims to employ techniques and methodologies for remote characterization of buildings for cadastral updating purposes, reducing the need to enter the parcels.

Design/methodology/approach

The research tools used were: RPAS and MMS (mobile mapping systems), making a three-dimensional model with RPAS data, and analyzing the results from these platforms. With the 3D model, it was possible to extract measurements and characteristics.

Findings

The analysis of the 3D model with the aerial photographs obtained better results in the characterization of the buildings and is the most indicated according to the study. There were difficulties in identifying some features, such as windows frames, and it was proposed to analyze the photographs without processing, to mitigate these identifications. The cadaster form was successfully completed using a combination of the techniques in this study.

Originality/value

This study brings a first proposal for the characterization of parcels for cadastral purposes, by remote sensing techniques, reducing the entry in the parcels for filling cadastral forms, with the evaluation of the proposal in the Brazilian case.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 6 March 2024

Xiaohui Li, Dongfang Fan, Yi Deng, Yu Lei and Owen Omalley

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of…

Abstract

Purpose

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of enhanced physical training. The main objective is to identify key advancements in sensor fusion technology, evaluate its application in VR systems and understand its impact on physical training.

Design/methodology/approach

The research initiates by providing context to the physical training environment in today’s technology-driven world, followed by an in-depth overview of VR. This overview includes a concise discussion on the advancements in sensor fusion technology and its application in VR systems for physical training. A systematic review of literature then follows, examining VR’s application in various facets of physical training: from exercise, skill development and technique enhancement to injury prevention, rehabilitation and psychological preparation.

Findings

Sensor fusion-based VR presents tangible advantages in the sphere of physical training, offering immersive experiences that could redefine traditional training methodologies. While the advantages are evident in domains such as exercise optimization, skill acquisition and mental preparation, challenges persist. The current research suggests there is a need for further studies to address these limitations to fully harness VR’s potential in physical training.

Originality/value

The integration of sensor fusion technology with VR in the domain of physical training remains a rapidly evolving field. Highlighting the advancements and challenges, this review makes a significant contribution by addressing gaps in knowledge and offering directions for future research.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 September 2023

Ata Jahangir Moshayedi, Nafiz Md Imtiaz Uddin, Xiaohong Zhang and Mehran Emadi Andani

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life…

Abstract

Purpose

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life of AD patients.

Design/methodology/approach

The present discourse endeavors to provide a comprehensive overview of extant scholarly inquiries that have examined the salience of inhibitory mechanisms vis-à-vis robotic interventions and their impact on patients with AD. Specifically, this review aims to explicate the contemporary state of affairs in this realm by furnishing a detailed explication of ongoing research endeavors. With the objective of elucidating the significance of inhibitory processes in robotic therapies for individuals with AD, this analysis offers a critical appraisal of extant literature that probes the intersection of cognitive mechanisms and assistive technologies. Through a meticulous analysis of diverse scholarly contributions, this review advances a nuanced understanding of the intricate interplay between inhibitory processes and robotic interventions in the context of AD.

Findings

According to the review papers, it appears that implementing robot-assisted rehabilitation can serve as a pragmatic and effective solution for enhancing the well-being and overall quality of life of patients and families engaged with AD. Besides, this new feature in the robotic area is anticipated to have a critical role in the success of this innovative approach.

Research limitations/implications

Due to the nascent nature of this cutting-edge technology and the constrained configuration of the mechanized entity in question, further protracted analysis is imperative to ascertain the advantages and drawbacks of robotic rehabilitation vis-à-vis individuals afflicted with Alzheimer’s ailment.

Social implications

The potential for robots to serve as indispensable assets in the provision of care for individuals afflicted with AD is significant; however, their efficacy and appropriateness for utilization by caregivers of AD patients must be subjected to further rigorous scrutiny.

Originality/value

This paper reviews the current robotic method and compares the current state of the art for the AD patient.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 August 2023

Krystian Borodacz and Cezary Szczepański

Before designing a navigation system, it is necessary to analyse possible approaches in terms of expected accuracy, existing limitations and economic justification to select the…

Abstract

Purpose

Before designing a navigation system, it is necessary to analyse possible approaches in terms of expected accuracy, existing limitations and economic justification to select the most advantageous solution. This paper aims to collect possible navigation methods that can provide correction for inertial navigation and to evaluate their suitability for use on a manoeuvring tactical missile.

Design/methodology/approach

The review of existing munitions was based on data collected from the literature and online databases. The data collected included dimensions, performance, applied navigation and guidance methods and their achievable accuracy. The requirements and limitations identified were confronted with the range of sensor parameters available on the market. Based on recent literature, navigation methods were reviewed and evaluated for applicability to inertial navigation system (INS) correction in global navigation satellite system-denied space.

Findings

The performance analysis of existing munition shows that small and relatively inexpensive micro-electro-mechanical system-type inertial sensors are required. A review of the parameters of existing devices of this type has shown that they are subject to measurement errors that do not allow them to achieve the delivery accuracy expected of precision missiles. The most promising navigation correction methods for manoeuvring flying objects have been identified.

Originality/value

The information presented in this paper is the result of the first phase of a project and presents the results of the requirements selection, initial sizing and preliminary design of the navigation system. This paper combines a review of the current state of the art in missile systems and an analysis of INS accuracy including the selection of sensor parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 July 2023

K. Madhana, L.S. Jayashree and Kalaivani Perumal

Human gait analysis is based on a significant part of the musculoskeletal, nervous and respiratory systems. Gait analysis is widely adopted to help patients increase community…

105

Abstract

Purpose

Human gait analysis is based on a significant part of the musculoskeletal, nervous and respiratory systems. Gait analysis is widely adopted to help patients increase community involvement and independent living.

Design/methodology/approach

This paper presents a system for the classification of abnormal human gaits using a Markerless 3D Motion Capture device. This study aims at examining and estimating the spatiotemporal and kinematic parameters obtained by 3D gait analysis in diverse groups of gait-impaired subjects and compares the parameters with that of healthy participants to interpret the gait patterns.

Findings

The classification is based on mathematical models that distinguish between normal and abnormal gait patterns depending on the deviations in the gait parameters. The difference between the gait measures of the control and each disease group was examined using 95% limits of agreement by the Bland and Altman method. The scatter plots demonstrated gait variability in Parkinsonian and ataxia gait and knee joint angle variation in hemiplegic gait when compared with those of healthy controls. To prove the validity of the Kinect camera, significant correlations were detected between Kinect- and inertial-based gait tests.

Originality/value

The various techniques used for gait assessments are often high in price and have existing limitations like the hindrance of components. The results suggest that the Kinect-based gait assessment techniques can be used as a low-cost, less-intrusive alternative to expensive infrastructure gait lab tests in the clinical environment.

Details

Journal of Enabling Technologies, vol. 17 no. 2
Type: Research Article
ISSN: 2398-6263

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 10 January 2024

Yifan Shi, Yuan Wang, Xiaozhou Liu and Ping Wang

Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth…

Abstract

Purpose

Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a 5-m wavelength range, leaving a significant knowledge gap in this field.

Design/methodology/approach

In this study, the authors used the well-established inertial reference method (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methods have been applied in different types of rail straightness measurement trollies, respectively. These instruments were tested in a high-speed rail section within a certain region of China. The test results were ultimately validated through using traditional straightedge and feeler gauge methods as reference data to evaluate the rail weld joint straightness within the 5-m wavelength range.

Findings

The research reveals that IR-method and MCR-method produce reasonably similar measurement results for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy for wavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed, carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.

Originality/value

The research compare two methods’ measurement effects in a longer wavelength range and demonstrate the superiority of MCR-method.

1 – 10 of 131