Search results

1 – 10 of over 1000

Abstract

Details

Fundamentals of Transportation and Traffic Operations
Type: Book
ISBN: 978-0-08-042785-0

Article
Publication date: 24 May 2011

Satadal Ghosh and Sujit K. Majumdar

The purpose of this paper is to provide the maintenance personnel with a methodology for modeling and estimating the reliability of critical machine systems using the historical…

1297

Abstract

Purpose

The purpose of this paper is to provide the maintenance personnel with a methodology for modeling and estimating the reliability of critical machine systems using the historical data of their inter‐failure times.

Design/methodology/approach

The failure patterns of five different machine systems were modeled with NHPP‐log linear process and HPP belonging to stochastic point process for predicting their reliability in future time frames. Besides the classical approach, Bayesian approach was also used involving Jeffreys's invariant non‐informative independent priors to derive the posterior densities of the model parameters of NHPP‐LLP and HPP with a view to estimating the reliability of the machine systems in future time intervals.

Findings

For at least three machine systems, Bayesian approach gave lower reliability estimates and a larger number of (expected) failures than those obtained by the classical approach. Again, Bayesian estimates of the probability that “ROCOF (rate of occurrence of failures) would exceed its upper threshold limit” in future time frames were uniformly higher for these machine systems than those obtained with the classical approach.

Practical implications

This study indicated that, the Bayesian approach would give more realistic estimates of reliability (in future time frames) of the machine systems, which had dependent inter‐failure times. Such information would be helpful to the maintenance team for deciding on appropriate maintenance strategy.

Originality/value

With the help of Bayesian approach, the posterior densities of the model parameters were found analytically by considering Jeffreys's invariant non‐informative independent prior. The case study would serve to motivate the maintenance teams to model the failure patterns of the repairable systems making use of the historical data on inter‐failure times and estimating their reliability in future time frames.

Details

International Journal of Quality & Reliability Management, vol. 28 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 March 2012

Seyed Hadi Hoseinie, Mohammad Ataei, Reza Khalokakaie, Behzad Ghodrati and Uday Kumar

Longwall mining is a special mining method with high productivity and smooth operation and the drum shearer is known as the most important component in longwall mines due to its…

2062

Abstract

Purpose

Longwall mining is a special mining method with high productivity and smooth operation and the drum shearer is known as the most important component in longwall mines due to its direct role in the coal cutting and production process. Therefore, its reliability is important in keeping the mine production at a desired level. Hence, reliability analysis is essential in identifying and removing existing problems of this machine in order to achieve a better production condition. This paper seeks to learn about the reliability of the shearer machine in order to locate critical subsystems. The improvement of the reliability of the critical subsystems, to enhance the optimum operation of the shearer machine, is the main objective of this research.

Design/methodology/approach

A basic methodology was used in this paper for the reliability modeling of the shearer machine. First, failure and performance data from a two‐year period at the Tabas Coal Mine‐Iran was classified and sorted. The tests for validating the assumption of independent and identical distribution (iid) of TBF data are done and the best modeling method for each subsystem was selected among the renewal process, homogeneous Poisson process and non‐homogeneous Poisson process. Finally, the reliability of subsystems and the machine were assessed.

Findings

The study revealed that six important subsystems of the shearer machine are; water system, haulage, electrical system, hydraulic system, cutting arms, and cable system. Pareto analysis shows that the 30 percent of failures and stoppages of the shearer were related to the water system and this system is the most critical subsystem of the machine. The failure rate analysis shows that the failure rates of the hydraulic, haulage and electrical systems were decreasing, meanwhile, the failure rates of the water system, cutting arms and cable system were increasing. The reliability of drum shearer reaches the zero value after 100 hours.

Originality/value

This paper, for the first time, defines a practical set of subsystems for the coal shearer based on field data and machine design.

Details

Journal of Quality in Maintenance Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 March 1996

George A. Bohoris

Considers trend testing in the context of reliability/survival applications. Suggests that the very common tendency in reliability testing to fit lifetime distributions to…

1090

Abstract

Considers trend testing in the context of reliability/survival applications. Suggests that the very common tendency in reliability testing to fit lifetime distributions to reliability/maintenance data might occasionally be invalid. Details the appropriate methods to assess the validity, or otherwise, of such a procedure. More specifically, discusses ROCOF curves and the Laplace test for trend, and demonstrates their use by means of a practical, reliability example.

Details

International Journal of Quality & Reliability Management, vol. 13 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 17 January 2019

Devendra Choudhary, Mayank Tripathi and Ravi Shankar

The demand of cement in India is expected to increase rapidly as the government has been giving immense boost to various housing facilities, infrastructure projects, road networks…

1059

Abstract

Purpose

The demand of cement in India is expected to increase rapidly as the government has been giving immense boost to various housing facilities, infrastructure projects, road networks and railway corridors. One of the ways to meet this rise in the demand of cement is to increase the capacity utilization of the existing cement plants by improving their availability. The availability of a cement plant can be improved by avoiding failures and reducing maintenance time through reliability, availability and maintainability (RAM) analysis of its subsystems. The paper aims to discuss this issue.

Design/methodology/approach

The data related to time between failure (TBF) and time to repair (TTR) of all the critical subsystems of a cement plant were collected over a period of two years for carrying out RAM analysis. Trend test and serial correlation test were performed on TBF and TTR data to verify whether these data are independent and identically distributed or not. Afterwards, the authors use EasyFit 5.6 professional software to find best-fit distribution of TBF and TTR data and their parameters. The effectiveness of a preventive maintenance policy was evaluated by simulating the real and proposed systems.

Findings

The results of the analysis show that the raw mill and the coal mill are critical subsystems of a cement plant from a reliability point of view, whereas the kiln is a critical subsystem from an availability point of view. The analysis shows that the repair time of the cement mill should be reduced for improving the availability of the cement plant. The RAM analysis showed that the capacity of the case study company is 17 percent underutilized due to maintenance-related problems and 15 percent underutilized because of management-related problems.

Practical implications

The study exhibits the usage of RAM analysis in deciding preventive maintenance programs of several cement plant subsystems. Thus, it would serve as a reference for reliability and maintenance managers in deciding maintenance strategies of cement plants as well as in improving their capacity utilization.

Originality/value

The study exhibits the usage of RAM analysis in deciding preventive maintenance programs of several cement plant subsystems. Even more, using a simulation study, the authors show that preventive maintenance of the cement plant beyond a certain level can be disadvantageous as it leads to an increase in downtime and decrease in availability.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 31 March 2023

Mangey Ram, Akshay Kumar and Sadiya Naaz

The purpose of this paper is to evaluate the reliability and signature reliability of solar panel k-out-of-n-multiplex system with the help of universal generating function.

Abstract

Purpose

The purpose of this paper is to evaluate the reliability and signature reliability of solar panel k-out-of-n-multiplex system with the help of universal generating function.

Design/methodology/approach

Energy scarcity and global warming issues have become important concerns for humanity in recent decades. To solve these problems, various nations work for renewable energy sources (RESs), including sun, breeze, geothermal, wave, radioactive and biofuels. Solar energy is absorbed by solar panels, referred to as photovoltaic panels, which then transform it into electricity that can be used to power buildings or residences. Remote places can be supplied with electricity using these panels. Solar energy is often generated using a solar panel that is connected to an inverter for power supply. As a result, a converter reliability evaluation is frequently required. This paper presents a study on the reliability analysis of k-out-of-n systems with heterogeneous components. In this research, the universal generating function methodology is used to identify the reliability function and signature reliability of the solar array components. This method is commonly used to assess the tail signature and Barlow-Proschan index with independent and identically distributed components.

Findings

The Barlow-Proschan index, tail signature, signature, expected lifetime, expected cost and minimal signature of independent identically distributed are all computed.

Originality/value

This is the first study of solar panel k-out-of-n-multiplex systems to examine the signature reliability with the help of universal generating function techniques with various measures.

Book part
Publication date: 18 September 2006

Joel A.C. Baum and Bill McKelvey

The potential advantage of extreme value theory in modeling management phenomena is the central theme of this paper. The statistics of extremes have played only a very limited…

Abstract

The potential advantage of extreme value theory in modeling management phenomena is the central theme of this paper. The statistics of extremes have played only a very limited role in management studies despite the disproportionate emphasis on unusual events in the world of managers. An overview of this theory and related statistical models is presented, and illustrative empirical examples provided.

Details

Research Methodology in Strategy and Management
Type: Book
ISBN: 978-0-76231-339-6

Abstract

Details

Handbook of Transport Modelling
Type: Book
ISBN: 978-0-08-045376-7

Article
Publication date: 4 September 2017

Miguel Angel Navas, Carlos Sancho and Jose Carpio

The purpose of this paper is to present the results of the application of various models to estimate the reliability in railway repairable systems.

Abstract

Purpose

The purpose of this paper is to present the results of the application of various models to estimate the reliability in railway repairable systems.

Design/methodology/approach

The methodology proposed by the International Electrotechnical Commission (IEC), using homogeneous Poisson process (HPP) and non-homogeneous Poisson process (NHPP) models, is adopted. Additionally, renewal process (RP) models, not covered by the IEC, are used, with a complementary analysis to characterize the failure intensity thereby obtained.

Findings

The findings show the impact of the recurrent failures in the times between failures (TBF) for rejection of the HPP and NHPP models. For systems not exhibiting a trend, RP models are presented, with TBF described by three-parameter lognormal or generalized logistic distributions, together with a methodology for generating clusters.

Research limitations/implications

For those systems that do not exhibit a trend, TBF is assumed to be independent and identically distributed (i.i.d.), and therefore, RP models of “perfect repair” have to be used.

Practical implications

Maintenance managers must refocus their efforts to study the reliability of individual repairable systems and their recurrent failures, instead of collections, in order to customize maintenance to the needs of each system.

Originality/value

The stochastic process models were applied for the first time to electric traction systems in 23 trains and to 40 escalators with ten years of operating data in a railway company. A practical application of the IEC models is presented for the first time.

Details

International Journal of Quality & Reliability Management, vol. 34 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 September 2019

Fernando Rojas

This paper aims to propose a supply model of periodic review with joint replenishment for multi-products grouped by several variables with random and time dependence demand.

Abstract

Purpose

This paper aims to propose a supply model of periodic review with joint replenishment for multi-products grouped by several variables with random and time dependence demand.

Design/methodology/approach

The products are grouped by multivariate cluster analysis. The stochastic inventory model describes the random demand of each product, considering the temporal dependency through a generalized autoregressive moving average model. Stochastic programming for the total cost of inventory is obtained considering the expected value of the demand per unit of time.

Findings

The total costs for the products grouped with the proposed model are 6% lower than for the individual inventory policy. The expected shortage units decrease significantly in the proposed grouped model with temporary dependence. In addition, the proposal with temporary dependency has lower costs than when the independent and identically distributed demand is considered.

Originality/value

The proposed policy is exemplified with real-world data from a Chilean hospital, where the products (drugs) are segmented by grouping variables, forming clusters of drugs with homogeneous behavior within the groups and heterogeneous behavior between groups.

1 – 10 of over 1000