Search results

1 – 6 of 6
Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Content available
Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation…

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. 35 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

51

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Book part
Publication date: 23 April 2024

Abstract

Details

Technological Innovations for Business, Education and Sustainability
Type: Book
ISBN: 978-1-83753-106-6

Open Access
Article
Publication date: 30 April 2024

Armando Di Meglio, Nicola Massarotti and Perumal Nithiarasu

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the…

Abstract

Purpose

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the combined power of deep learning (DL) and physics-based methods (PBM) to create an active virtual replica of the physical system.

Design/methodology/approach

To achieve this goal, we introduce a deep neural network (DNN) as the digital twin and a Finite Element (FE) model as the physical system. This integrated approach is used to address the challenges of controlling an unsteady heat transfer problem with an integrated feedback loop.

Findings

The results of our study demonstrate the effectiveness of the proposed digital twinning approach in regulating the maximum temperature within the system under varying and unsteady heat flux conditions. The DNN, trained on stationary data, plays a crucial role in determining the heat transfer coefficients necessary to maintain temperatures below a defined threshold value, such as the material’s melting point. The system is successfully controlled in 1D, 2D and 3D case studies. However, careful evaluations should be conducted if such a training approach, based on steady-state data, is applied to completely different transient heat transfer problems.

Originality/value

The present work represents one of the first examples of a comprehensive digital twinning approach to transient thermal systems, driven by data. One of the noteworthy features of this approach is its robustness. Adopting a training based on dimensionless data, the approach can seamlessly accommodate changes in thermal capacity and thermal conductivity without the need for retraining.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 18 April 2024

Yaxing Ren, Ren Li, Xiaoying Ru and Youquan Niu

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller…

Abstract

Purpose

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller range and shorter time. The developed active shock absorber will also improve the safety and comfort of passengers driving in ultra-high-speed elevators.

Design/methodology/approach

A six-degree of freedom dynamic model is established according to the position and condition of the car. Then the active shock absorber and disturbance compensation-based adaptive control scheme are designed and simulated in MATLAB/Simulink. The results are analysed and compared with the traditional shock absorber.

Findings

The results show that, compared with traditional spring-based passive damping systems, the designed active shock absorber can reduce vibration displacement by 60%, peak acceleration by 50% and oscillation time by 2/3 and is more robust to different spring stiffness, damping coefficient and load.

Originality/value

The developed active shock absorber and its control algorithm can significantly reduce vibration amplitude and converged time. It can also adjust the damping strength according to the actual load of the elevator car, which is more suitable for high-speed elevators.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only content I have access to

Year

Last month (6)

Content type

1 – 6 of 6