Search results

1 – 10 of 99
Article
Publication date: 13 November 2023

Yang Li and Tianxiang Lan

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual…

Abstract

Purpose

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual parameters.

Design/methodology/approach

This analysis is based on the numerical simulation data obtained, using the hybrid finite element–discrete element (FE–DE) method. The forecasting model was compared with the numerical results and the accuracy of the model was evaluated by the root mean square (RMS) and the RMS error, the mean absolute error and the mean absolute percentage error.

Findings

The multivariate nonlinear regression model can accurately predict the nonlinear relationships between injection rate, leakoff coefficient, elastic modulus, permeability, Poisson’s ratio, pore pressure and final fracture area. The regression equations obtained from the Newton iteration of the least squares method are strong in terms of the fit to the six sensitive parameters, and the model follow essentially the same trend with the numerical simulation data, with no systematic divergence detected. Least absolutely deviation has a significantly weaker performance than the least squares method. The percentage contribution of sensitive parameters to the final fracture area is available from the simulation results and forecast model. Injection rate, leakoff coefficient, permeability, elastic modulus, pore pressure and Poisson’s ratio contribute 43.4%, −19.4%, 24.8%, −19.2%, −21.3% and 10.1% to the final fracture area, respectively, as they increased gradually. In summary, (1) the fluid injection rate has the greatest influence on the final fracture area. (2)The multivariate nonlinear regression equation was optimally obtained after 59 iterations of the least squares-based Newton method and 27 derivative evaluations, with a decidability coefficient R2 = 0.711 representing the model reliability and the regression equations fit the four parameters of leakoff coefficient, permeability, elastic modulus and pore pressure very satisfactorily. The models follow essentially the identical trend with the numerical simulation data and there is no systematic divergence. The least absolute deviation has a significantly weaker fit than the least squares method. (3)The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Originality/value

The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 August 2023

Jian Wei, XiaoYue Sun, Jing Tian and CaiHong Liu

This paper aims to study the impact of transient velocity changes on sealing performance during reciprocating sealing processes.

113

Abstract

Purpose

This paper aims to study the impact of transient velocity changes on sealing performance during reciprocating sealing processes.

Design/methodology/approach

Establish a model of transient mixed lubrication, solve the transient Reynolds equation, consider the effect of temperature rise at the seal interfaces, and determine the behavior of the seal interfaces, such as film thickness and fluid pressure. Evaluation with friction and leakage rate, calculate the variation of sealing performance with reciprocating velocity under different working conditions, and verify it through bench experiments.

Findings

Within a reciprocating stroke, the frictional force decreases with increasing velocity, and the frictional force of the outstroke is greater than that of the instroke; at the time of the stroke transition, the fluid pressure is smallest and the rough peak contact pressure is greatest. At present, the dynamic pressure effect of fluids is the largest, and the friction force also increases, which increases the risk of material wear and failure. Friction and leakage increase with increasing pressure and root mean square roughness. As temperature increases, friction increases and leakage decreases. In studying the performance variations of seal components through a reciprocating sealing experiment, it was found that the friction force decreases with increasing velocity, which is consistent with the calculated results and more similar to the calculated results considering the temperature rise.

Originality/value

This study provides a reference for the study of transient sealing performance.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2023

Li Zhang, Bisheng Wu and Haitao Zhang

Natural gas hydrate (NGH) has been regarded as one of the most important resources due to NGH's large amounts of reserve. However, NGH development still faces many technical…

Abstract

Purpose

Natural gas hydrate (NGH) has been regarded as one of the most important resources due to NGH's large amounts of reserve. However, NGH development still faces many technical challenges, such as low production rate and reservoir instability resulting from NGH decomposition. Therefore, developing a fully coupled THMC model for simulating the hydrate decomposition and studying its mechanical behavior is very important and necessary. The purpose of this article is to develop and solve a multi-phase, strong nonlinearity and large-scale fully coupled thermal-hydro-mechanical–chemical (THMC) model for simulating the multi-physics processes involving solid-liquid-gas flow, heat transfer, NGH phase change and rock deformation during NGH decomposition.

Design/methodology/approach

In this paper, a multi-phase, strong nonlinearity and large-scale fully coupled THMC model is developed for simulating the multi-physics processes involving solid-liquid-gas flow, heat transfer, NGH phase change and rock deformation during NGH dissociation. The fully coupled THMC model is solved by using a fully implicit finite element method, in which the gas pressure, water pressure, temperature and displacement are taken as basic unknown variables. The proposed model is validated against with the experimental data, showing high accuracy and reliability.

Findings

A multi-phase, strong nonlinearity and large-scale fully coupled THMC model is developed for simulating the multi-physics processes involving solid-liquid-gas flow, heat transfer, NGH phase change and rock deformation during NGH decomposition. The proposed model is validated against with the experimental data, showing high accuracy and reliability.

Research limitations/implications

Some assumptions are made to make the model tractable, including (1) the composition gas of hydrate is pure methane; (2) the gas-liquid multi-phase flow in the pore obeys Darcy's law; (3) hydrate occurs on the surface of soil particles, both of them form the composite consolidation material; (4) the small-strain assumption is applied to composite solid materials, which are treated as skeletons and cannot be moved; (5) momentum change caused by phase change is not considered.

Practical implications

NGH has been regarded as one of the most important resources due to its large amounts of reserve. However, NGH development still faces many technical challenges, such as low production rate and reservoir instability resulting from NGH decomposition. Most of the existing studies decouple the process with solid deformation and seepage behavior, but the accuracy of the numerical results will be sacrificed to certain extent. Therefore, it is very important and necessary to develop a fully coupled THMC model for simulating the hydrate decomposition and studying its mechanical behavior.

Social implications

NGH, widely distributed in shallow seabed or permanent frozen region, has the characteristics of high energy density and high combustion efficiency (Yan et al., 2020). A total of around 7.5 × 1,018 m3 has been proved to exist around the world and 1 m3 of NGH can release about 160–180 m3 of natural gas (Kvenvolden and Lorenson) under normal conditions. Safely and sustainably extracting NGH commercially can effectively relieve global energy pressure and contribute to achieving carbon reduction goals.

Originality/value

The novelty of the present work lies in mainly two aspects. First, a fully coupled THMC model is developed for studying the multi-physics processes involving solid-liquid-gas flow, heat transfer, NGH phase change and solid deformation during NGH dissociation. Second, the numerical solution is obtained by using a fully implicit finite element method (FEM) and is validated against experimental data.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 February 2022

Mesfin Amaru Ayele, Tarun Kumar Lohani, Kinfe Bereda Mirani, Muluneh Legesse Edamo and Abebe Temesgen Ayalew

Prediction of sediment yield for a particular river is essential to study the river morphology, agricultural land management and the lake/reservoir sedimentation investigation…

Abstract

Purpose

Prediction of sediment yield for a particular river is essential to study the river morphology, agricultural land management and the lake/reservoir sedimentation investigation. The purpose of this research was to predict sediment yield by simulating and optimizing using model analysis from Bilate River.

Design/methodology/approach

Continuous daily sediment produced was estimated using sediment rating curve analysis. Sediment yield was simulated with soil and water assessment tool (SWAT) and the parameters were optimized by using Sequential Uncertainty Fitting algorithm. A total of 15 years of monthly flow and sediment yield data was calibrated and validated during the course of time.

Findings

Results evaluated through SWAT showed that the model performance was very good. From the model output prediction, the total measured and simulated sediment yield were 5.425 million ton/year and 5.538 million ton/year, respectively. The result indicates that there were high amount of soil loss resulting into sediment yield produced from the watershed per year which needs appropriate soil and water conservation techniques. Thus, the finding of this research work can provide an effective watershed/river basin management and environmental restoration.

Originality/value

This paper is an original research work and all the referred sources are cited properly wherever deemed fit.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

Urban Resilience: Lessons on Urban Environmental Planning from Turkey
Type: Book
ISBN: 978-1-83549-617-6

Article
Publication date: 29 April 2024

Zhuofeng Li, Shide Mo, Kaiwen Yang and Yunmin Chen

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Abstract

Purpose

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Design/methodology/approach

An arbitrary Lagrangian–Eulerian scheme is adopted to preserve the quality of mesh throughout the numerical simulation. Simplified methods of layered penetration and coupled pore pressure analysis of cone penetration have been proposed and verified by previous studies. The investigation is then extended by the present work to study the cone penetration test in a two-layered clay profile assumed to be homogeneous with the modified Cam clay model.

Findings

The reduction of the range of pore pressure with decreasing PF will cause a decrease of the sensing distance. The PF of the underlying soil is one of the factors that determine the development distance. The interface can be obtained by taking the position of the maximum curvature of the penetrometer resistance curve in the case of stiff clay overlying soft clay. In the case of soft clay overlying stiff clay, the interface locates at the maximum curvature of the penetrometer resistance curve above about 1.6D.

Research limitations/implications

The cone penetration analyses in this paper are conducted assuming smooth soil-cone contact.

Originality/value

A simplified method based on ALE in Abaqus/Explicit is proposed for layered penetration, which solves the problem of mesh distortion at the interface between two materials. The stiffness equivalent method is also proposed to couple pore pressure during cone penetration, which achieves efficient coupling of pore water pressure in large deformations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 December 2023

Jyoti Ranjan Mohapatra and Manoj Kumar Moharana

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity…

Abstract

Purpose

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity analysis are performed and compared with the traditional serpentine design. The substrate thickness and its thermal conductivity are varied to analyse the effect of axial-back conduction due to the conjugate nature of heat transfer.

Design/methodology/approach

The traditional serpentine minichannel is modified into five new fragmented designs with two inlets and two outlets. A three-dimensional numerical model involving the effect of conjugate heat transfer with a single-phase laminar fluid flow subjected to constant heat flux is solved using a finite volume-based computational fluid dynamics solver.

Findings

The minimum and maximum temperature differences are observed for the two branch fragmented flow designs. The two-branch and middle channel fragmented design shows better temperature uniformity over other designs while the three-branch fragmented designs exhibited better hydrodynamic performance.

Practical implications

MCPs could be used as an indirect liquid cooling method for battery thermal management of pouch and prismatic cells. Coupling the modified cold plates with a battery module and investigating the effect of different battery parameters and environmental effects in a transient state are the prospects for further research.

Originality/value

The study involves several aspects of evaluation for a conclusive decision on optimum channel design by analysing the performance plot between the temperature uniformity index, average base temperature and overall thermal performance. The new fragmented channels are designed in a way to facilitate the fluid towards the outlet in the minimum possible path thereby reducing the pressure drop, also maximizing the heat transfer and temperature uniformity from the substrate due to two inlets and a reversed-flow pattern. Simplified minichannel designs are proposed in this study for practical deployment and ease of manufacturability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 October 2023

Yongliang Wang and Nana Liu

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the…

Abstract

Purpose

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the fracture network is affected by the disturbance between the fractures initiation sequences and spacings between adjacent wells. However, it remains unclear how well spacing and initiation sequences lead to fracture propagation, deflection and connection.

Design/methodology/approach

In this study, the thermal-hydro-mechanical coupling effect in the hydrofracturing process was considered, to establish a finite element-discrete element model of multistage hydrofracturing in a horizontal well. Using typical cases, the unstable propagation of hydraulic fractures in multiple horizontal wells was investigated under varying well spacing and initiation sequences. Combined with the shear stress shadow caused by in situ stress disturbed by fracture tip propagation, the quantitative indexes of fracture propagation such as length, volume, displacement vector, deflection and unstable propagation behavior of the hydrofracturing fracture network were analyzed.

Findings

The results show that the shear stress disturbance caused by multiple hydraulic fractures is a significant factor in multi-well hydrofracturing. Reducing the spacing between multiple wells increases the stress shadow area and aggravates the mutual disturbance and deflection between the fractures. The quantitative analysis results show that a decrease of well spacing reduces the total length of hydraulic fractures but increases the total volume of the fracture; compared with sequential and simultaneous fracturing, alternate fracturing can effectively reduce stress shadow area, alleviate fracture disturbance and generate larger fracture propagation length and volume.

Originality/value

The numerical models and results of the unstable propagation and stress evolution of the hydraulic fracture network under thermal-hydro-mechanical coupling obtained in this study can provide useful guidance for the evaluation and design of rock mass fracture networks in deep unconventional oil and gas reservoirs.

1 – 10 of 99