Search results

1 – 10 of 490
Article
Publication date: 8 August 2022

Lionel Dongmo Fouellefack, Lelanie Smith and Michael Kruger

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable…

Abstract

Purpose

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable of achieving a high range and endurance due to the low energy density of its batteries. Alternatively, conventional UAVs (cUAVs) using fuel with an internal combustion engine (ICE) produces more noise and thermal signatures which is undesirable, especially if the air vehicle is required to patrol at low altitudes and remain undetected by ground patrols. This paper aims to investigate the impact of implementing hybrid propulsion technology to improve on the endurance of the UAV (based on a 13.6 kg UAV).

Design/methodology/approach

A HE-UAV model is developed to analyze the fuel consumption of the UAV for given mission profiles which were then compared to a cUAV. Although, this UAV size was used as reference case study, it can potentially be used to analyze the fuel consumption of any fixed wing UAV of similar take-off weight. The model was developed in a Matlab-Simulink environment using Simulink built-in functionalities, including all the subsystem of the hybrid powertrain. That is, the ICE, electric motor, battery, DC-DC converter, fuel system and propeller system as well as the aerodynamic system of the UAV. In addition, a ruled-based supervisory controlled strategy was implemented to characterize the split between the two propulsive components (ICE and electric motor) during the UAV mission. Finally, an electrification scheme was implemented to account for the hybridization of the UAV during certain stages of flight. The electrification scheme was then varied by changing the time duration of the UAV during certain stages of flight.

Findings

Based on simulation, it was observed a HE-UAV could achieve a fuel saving of 33% compared to the cUAV. A validation study showed a predicted improved fuel consumption of 9.5% for the Aerosonde UAV.

Originality/value

The novelty of this work comes with the implementation of a rule-based supervisory controller to characterize the split between the two propulsive components during the UAV mission. Also, the model was created by considering steady flight during cruise, but not during the climb and descend segment of the mission.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 April 2020

Sezer Çoban

This paper aims to investigate the autonomous performance optimization of a research-based hybrid unmanned aerial vehicle (i.e. HUAV) manufactured at Iskenderun Technical…

Abstract

Purpose

This paper aims to investigate the autonomous performance optimization of a research-based hybrid unmanned aerial vehicle (i.e. HUAV) manufactured at Iskenderun Technical University.

Design/methodology/approach

To maximize the autonomous performance of this HUAV, longitudinal and lateral dynamics were initially obtained. Then, the optimum magnitudes of the autopilot system parameters were estimated by considering the vehicle’s dynamic model and autopilot parameters.

Findings

After determining the optimum values of the longitudinal and lateral autopilots, an improved design for the autonomously controlled (AC) HUAV was achieved in terms of real-time flight.

Practical implications

Simultaneous improvement of the longitudinal and lateral can be used for better HUAV operations.

Originality/value

In this paper, the autopilot systems (i.e. longitudinal and lateral) of an HUAV are for the first time simultaneously designed in the literature. This helps the simultaneous improvement of the longitudinal and lateral flight trajectory tracking performances.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial…

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 4 September 2019

Navya Thirumaleshwar Hegde, V.I. George, C. Gurudas Nayak and Kamlesh Kumar

The purpose of this paper is to give reviews on the platform modeling and design of a controller for autonomous vertical take-off and landing (VTOL) tilt rotor hybrid unmanned…

1252

Abstract

Purpose

The purpose of this paper is to give reviews on the platform modeling and design of a controller for autonomous vertical take-off and landing (VTOL) tilt rotor hybrid unmanned aerial vehicles (UAVs). Nowadays, UAVs have experienced remarkable progress and can be classified into two main types, i.e. fixed-wing UAVs and VTOL UAVs. The mathematical model of tilt rotor UAV is time variant, multivariable and non-linear in nature. Solving and understanding these plant models is very complex. Developing a control algorithm to improve the performance and stability of a UAV is a challenging task.

Design/methodology/approach

This paper gives a thorough description on modeling of VTOL tilt rotor UAV from first principle theory. The review of the design of both linear and non-linear control algorithms are explained in detail. The robust flight controller for the six degrees of freedom UAV has been designed using H-infinity optimization with loop shaping under external wind and aerodynamic disturbances.

Findings

This review will act as a basis for the future work on modeling and control of VTOL tilt rotor UAV by the researchers. The development of self-guided and fully autonomous UAVs would result in reducing the risk to human life. Civil applications include inspection of rescue teams, terrain, coasts, border patrol buildings, police and pipelines. The simulation results show that the controller achieves robust stability, good adaptability and robust performance.

Originality/value

The review articles on quadrotors/quadcopters, hybrid UAVs can be found in many literature, but there are comparatively a lesser amount of review articles on the detailed description of VTOL Tilt rotor UAV. In this paper modeling, platform design and control algorithms for the tilt rotor are presented. A robust H-infinity loop shaping controller in the presence of disturbances is designed for VTOL UAV.

Details

International Journal of Intelligent Unmanned Systems, vol. 8 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 15 September 2023

Navid Mohammadi, Morteza Tayefi and Man Zhu

Dual-thrust hybrid unmanned aerial vehicle (UAV) technology offers a highly robust and efficient system that incorporates the take-off and landing capabilities of rotary-wing…

Abstract

Purpose

Dual-thrust hybrid unmanned aerial vehicle (UAV) technology offers a highly robust and efficient system that incorporates the take-off and landing capabilities of rotary-wing aircraft with the endurance capacities of fixed-wing aircraft. The purpose of this study is to model and control a hybrid UAV in three distinct flight modes: rotary-wing, fixed-wing and over-actuated model.

Design/methodology/approach

Model predictive control (MPC) along with linear models are applied to design controllers for the rotary-wing or vertical take-off and transition to the fixed-wing flight. The MPC algorithm is implemented with two approaches, first in its usual form and then in a new form with the help of tracking error variables as state variables.

Findings

Because the tracking error variables are more compatible with the cost function used in MPC, the results improve significantly. This is especially important for a safe and stable transition from rotary-wing to fixed-wing flight, which should be done quickly. The authors also propose a control allocation strategy with MPC algorithm to exploit the thrust and control inputs of both rotary-wing and fixed-wing systems for the transition phase. As the control system is over-actuated, the proposed algorithm distributes the control signal among the actuators better than the MPC alone. The numerical results show that the flight trajectory is also improved.

Originality/value

The research background is reviewed in the introduction section. The other sections are originally developed in this paper to the best of the authors’ knowledge.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2023

Metin Uzun and Tugrul Oktay

The purpose of this paper is to improve autonomous flight performance of an unmanned aerial vehicle (UAV) having actively sweep angle morphing wing using simultaneous UAV and…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of an unmanned aerial vehicle (UAV) having actively sweep angle morphing wing using simultaneous UAV and flight control system (FCS) design.

Design/methodology/approach

An UAV is remanufactured in the ISTE Unmanned Aerial Vehicle Laboratory. Its wing sweep angle can vary actively during flight. FCS parameters and wing sweep angle are simultaneously designed to optimize autonomous flight performance index using a stochastic optimization method called as simultaneous perturbation stochastic approximation (SPSA). Results obtained are applied for flight simulations.

Findings

Using simultaneous design process of an UAV having actively sweep angle morphing wing and FCS design, autonomous flight performance index is maximized.

Research limitations/implications

Authorization of Directorate General of Civil Aviation in Turkey is crucial for real-time UAV flights.

Practical implications

Simultaneous UAV having actively sweep angle morphing wing and FCS design process is so beneficial for recovering UAV autonomous flight performance index.

Social implications

Simultaneous UAV having actively sweep angle morphing wing and FCS design process achieves confidence, high autonomous performance index and simple service demands of UAV operators.

Originality/value

Composing a novel approach to improve autonomous flight performance index (e.g. less settling and rise time, less overshoot meanwhile trajectory tracking) of an UAV and creating an original procedure carrying out simultaneous UAV having actively sweep angle morphing wing and FCS design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 November 2023

Sezer Çoban

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain…

Abstract

Purpose

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain parameters (i.e. wing taper ratio and wing aspect ratio) while there are lower and upper constraints on these redesign parameters.

Design/methodology/approach

A mini UAV is produced in the Iskenderun Technical University (ISTE) Unmanned Aerial Vehicle Laboratory. Its complete wing can vary passively before the flight with respect to the result of the stochastic redesign of the wing while maximizing autonomous flight performance. Flight control system (FCS) parameters (i.e. gains of longitudinal and lateral proportional-integral-derivative controllers) and wing redesign parameters mentioned before are simultaneously designed to maximize autonomous flight performance index using a certain stochastic optimization strategy named as simultaneous perturbation stochastic approximation (SPSA). Found results are used while composing UAV flight simulations.

Findings

Using stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV over previously mentioned wing parameters and FCS, it obtained a maximum UAV autonomous flight performance.

Research limitations/implications

Permission of the directorate general of civil aviation in the Republic of Türkiye is essential for real-time UAV autonomous flights.

Practical implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach is very useful for improving any mini UAV autonomous flight performance cost index.

Social implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach succeeds confidence, highly improved autonomous flight performance cost index and easy service demands of mini UAV operators.

Originality/value

Creating a new approach to recover autonomous flight performance cost index (e.g. satisfying less settling time and less rise time, less overshoot during flight trajectory tracking) of a mini UAV and composing a novel procedure performing simultaneous mini UAV having passively morphing wing over certain parameters while there are upper and lower constraints and FCS design idea.

Article
Publication date: 16 November 2021

Eduard Bertran, Paula Tercero and Alex Sànchez-Cerdà

This paper aims to overcome the main obstacle to compare the merits of the different control strategies for fixed-wing unmanned aerial vehicles (UAVs) to assess autopilot…

Abstract

Purpose

This paper aims to overcome the main obstacle to compare the merits of the different control strategies for fixed-wing unmanned aerial vehicles (UAVs) to assess autopilot performances. Up to now, the published studies of control strategies have been carried out over disperse models, thus being complicated, if not impossible, to compare the merits of each proposal. The authors present a worked benchmark for autopilots studies, consisting of generalized models obtained by merging UAVs’ parameters gathered from selected literature (journals) with other parameters directly obtained by the authors to include some relevant UAVs whose models are not provided in the literature. To obtain them it has been used a dedicated software (from U.S. Air Force).

Design/methodology/approach

The proposed models have been constructed by averaging both the main aircraft defining parameters (model derivatives) and pole-zero locations of longitudinal transfer functions. The suitability of the used methodologies has been checked from their capability to fit the short period and the phugoid modes. Previous analytical model arrangement has been required to match a uniform set of parameters, as the inner state variables are neither the same along the different published models nor between the additional models the authors have here contributed. Besides, moving models between the space state representation and transfer function is not just a simple averaging process, as neither the parameters nor the model orders are the same in the different published works. So, the junction of the models to a common set of parameters requires some residual’s computation and transient responses assessment (even Fourier analysis has been included to preserve the dominance of the phugoid) to keep the main properties of the models. The least mean squares technique has been used to have better fittings between SISO model parameters with state–space ones.

Findings

Both the SISO (Laplace) and state-space models for the longitudinal transfer function of an “averaged” fixed-wing UAV are proposed.

Research limitations/implications

More complicated situations, such as strong wind conditions, need another kind of models, usually based on finite element method simulation. These particular models apply fluid dynamics to study aerostructural aircraft aspects, such as flutter and other aerolastic aspects, the behavior under icing conditions or other distributed parameter problems. Even some models aim to control other aspects than the autopilot, such as the trajectory prediction. However, these models are not the most suitable for the basic UAV autopilot design (early design), so they are outside the objective of this paper. Obviously, the here-considered UAVs are not all the existing ones, but the number is large enough to consider the result as a reliable and realistic representation. The presented study may be seen as a stepping stone, allowing to include other UAVs in future works.

Practical implications

The proposed models can be used as benchmarks, or as a previous step to produce improved benchmarks, in order to have a common and realistic scenario the compare the benefits of the different control actions in UAV autopilots continuously presented in the published research.

Originality/value

A work with the scope of the presented one, merging model parameters from literature with other (often referred in papers and websites) whose parameters have been obtained by the authors has been never published.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 September 2023

Oguz Kose, Tugrul Oktay and Enes Özen

The purpose of this paper is to obtain values that stabilize the lateral and longitudinal flight of the quadrotor for which the morphing amount and the best…

Abstract

Purpose

The purpose of this paper is to obtain values that stabilize the lateral and longitudinal flight of the quadrotor for which the morphing amount and the best Proportional-Integral-Derivative (PID) coefficients are determined by using the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm.

Design/methodology/approach

Quadrotor consists of body and arms; there are propellers at the ends of the arms to take off and rotors that rotate them. By reducing the angle between mechanism 1 and the rotors with the horizontal plane, the angle between mechanism 2 and the arms, the rotors rise and different configurations are obtained. Conventional multi-rotor aircraft has a fixed fuselage and does not need a tail rotor to change course as helicopters do. The translational and rotational movements are provided by the rotation of the rotors of the aircraft at different speeds by creating moments about the geometric center in 6-degree-of-freedom (DOF) space. These commands sent from the ground are provided by the flight control board in the aircraft. The longitudinal and lateral flight stability and properties of different configurations evaluated by dynamic analysis and simulations in 6 DOF spaces are investigated. An algorithm and PID controller are being developed using SPSA to achieve in-flight position and attitude control of an active deformable aircraft. The results are compared with the results of the literature review and the results of the previous article.

Findings

With SPSA, the best PID coefficients were obtained in case of morphing.

Research limitations/implications

The effects of quadrotor arm height and hub angle changes affect flight stability. With the SPSA optimization method presented in this study, the attitude is quickly stabilized.

Practical implications

With the optimization method, the most suitable PID coefficients and angle values for the lateral and longitudinal flight stability of the quadrotor are obtained.

Social implications

The transition rate and PID coefficients are determined by using the optimization method, which is advantageous in terms of cost and practicality.

Originality/value

With the proposed method, the aircraft can change shape to adapt to different environments, and the parameters required for more stable flight for each situation will be calculated, and this will be obtained more quickly and safely with the SPSA optimization method.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 May 2022

J. Vijitha Ananthi and P. Subha Hency Jose

To avoid this situation, the authors proposed an optimal artificial bee colony algorithm-based Unmanned Aerial Vehicle (UAV) routing algorithm for efficient data communication…

Abstract

Purpose

To avoid this situation, the authors proposed an optimal artificial bee colony algorithm-based Unmanned Aerial Vehicle (UAV) routing algorithm for efficient data communication between doctors and patients. This proposed method worked in three stages.

Design/methodology/approach

In recent decades, wireless body area networks have played an important role in health care applications. It facilitates the transmission of the patients' health data analysis report to the appropriate doctors.

Findings

In the first phase, biological sensors are connected to the human body via a controller node and collected data is transmitted via Bluetooth to the Personal Device Assistant (PDA). In the second phase, collected data will be transmitted via the Internet of things using an artificial bee colony algorithm. The second aids in determining the best route. In the third phase, unmanned aerial vehicles will use the best path to send collected data to doctors, caregivers, ambulances and cloud storage servers.

Originality/value

The simulation results show that the network's performance is superior when compared to existing approaches. The proposed algorithm achieves a high throughput, a lower delay, a higher link rate and a higher delivery rate.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 490