Search results

1 – 10 of over 1000
Article
Publication date: 19 May 2023

Michail Katsigiannis, Minas Pantelidakis and Konstantinos Mykoniatis

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the…

Abstract

Purpose

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the effect of lean manufacturing (LM) techniques on manufacturing facilities and the transition of a mass production (MP) facility to incorporating LM techniques.

Design/methodology/approach

In this paper, the authors apply a hybrid simulation approach to improve an educational automotive assembly line and provide guidelines for implementing different LM techniques. Specifically, the authors describe the design, development, verification and validation of a hybrid discrete-event and agent-based simulation model of a LEGO® car assembly line to analyze, improve and assess the system’s performance. The simulation approach examines the base model (MP) and an alternative scenario (just-in-time [JIT] with Heijunka).

Findings

The hybrid simulation approach effectively models the facility. The alternative simulation scenario (implementing JIT and Heijunka LM techniques) improved all examined performance metrics. In more detail, the system’s lead time was reduced by 47.37%, the throughput increased by 5.99% and the work-in-progress for workstations decreased by up to 56.73%.

Originality/value

This novel hybrid simulation approach provides insight and can be potentially extrapolated to model other manufacturing facilities and evaluate transition scenarios from MP to LM.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 7 July 2023

Yasmina Maïzi and Ygal Bendavid

Assess the realistic impacts of implementing an Radio Frequency Identification (RFID)/Internet of Things (IoT) uniforms’ distribution system for managing medical personnel’s…

364

Abstract

Purpose

Assess the realistic impacts of implementing an Radio Frequency Identification (RFID)/Internet of Things (IoT) uniforms’ distribution system for managing medical personnel’s scrubs in operating rooms. The authors use a hybrid simulation framework to address the following objectives and challenges: a) reduce and control operating rooms’ level of inventory; b) stabilize scrubs’ demand and c) improve infection control and prevention of cross-contamination (through scrubs over manipulation and hoarding).

Design/methodology/approach

The authors adopt a Design Science approach. This methodological approach is used to design, develop, create and evaluate information technology “artifacts” (e.g. constructs, models, methods and instantiations) intended to solve organizational problems and make research contributions (Peffers et al., 2007). More specifically, the authors follow the Design Science Research Methodology process model which includes six steps: problem identification and motivation, definition of the objectives for a solution, design and development, demonstration, evaluation, and communication.

Findings

To assess the realistic impacts of implementing an RFID-IoT uniforms’ distribution system for managing medical personnel’s scrubs in operating rooms, the authors adopted a design science approach and initiated the research by documenting the business case and reviewed the existing literature to build a comparative analysis of existing uniforms’ distribution systems. The authors used a hybrid simulation model to assess the impact of three business cases: present mode of operation, implementing smart shelves or the smart distributors. The authors show that smart dispensers allow a greater control on scrubs’ utilization while eliminating the cross-contamination of the medical personnel.

Practical implications

Through this research study, the authors provide hospitals’ managers a scientific support for uniforms’ (scrubs) distribution process improvement. The authors use a hybrid simulation model to compare innovative solutions for uniforms’ distribution systems in the form of “smart cabinets” supported by Radio Frequency Identification (RFID)/Internet of Things (IoT) technologies and choose the most appropriate design for the hospital to meet two main challenges: a) inefficiency of uniform replenishment-distribution system and b) noncompliancy with infection control regulations caused by the distribution system.

Originality/value

From a methodological perspective, this paper addresses concerns from researchers calling quantitative research methods and using case-based research strategy to address IoT issues and assess the system in practice. From a broader point of view, this work confirms the predominant interest of RFID-IoT research work in the arena of supply chain management and logistics as the technology is used for tracking purpose and for monitoring applications. It is also one response to the research community suggesting that “hospitals should evaluate the medical effectiveness of the new technologies as well as the cost before adoption”.

Details

Business Process Management Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 24 May 2023

Pinar Kocabey Ciftci and Zeynep Didem Unutmaz Durmusoglu

This article proposes a novel hybrid simulation model for understanding the complex tobacco use behavior.

Abstract

Purpose

This article proposes a novel hybrid simulation model for understanding the complex tobacco use behavior.

Design/methodology/approach

The model is developed by embedding the concept of the multistage learning-based fuzzy cognitive map (FCM) into the agent-based model (ABM) in order to benefit from advantageous of each methodology. The ABM is used to represent individual level behaviors while the FCM is used as a decision support mechanism for individuals. In this study, socio-demographic characteristics of individuals, tobacco control policies, and social network effect are taken into account to reflect the current tobacco use system of Turkey. The effects of plain package and COVID-19 on tobacco use behaviors of individuals are also searched under different scenarios.

Findings

The findings indicate that the proposed model provides promising results for representing the mental models of agents. Besides, the scenario analyses help to observe the possible reactions of people to new conditions according to characteristics.

Originality/value

The proposed method combined ABM and FCM with a multi-stage learning phases for modeling a complex and dynamic social problem as close as real life. It is expected to contribute for both ABM and tobacco use literature.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 March 2024

Hendrik Hensel and Markus Clemens

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air…

Abstract

Purpose

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air. However, under high voltage direct current conditions, charge accumulation and electric field stress may occur, which may lead to partial discharge or system failure. Therefore, numerical simulations are used to design the system and determine the electric field and charge distribution. Although the gas conduction shows a more complex current–voltage characteristic compared to solid insulation, the electric conductivity of the SF6 gas is set as constant in most works. The purpose of this study is to investigate different approaches to address the conduction in the gas properly for numerical simulations.

Design/methodology/approach

In this work, two approaches are investigated to address the conduction in the insulating gas and are compared to each other. One method is an ion-drift-diffusion model, where the conduction in the gas is described by the ion motion in the SF6 gas. However, this method is computationally expensive. Alternatively, a less complex approach is an electro-thermal model with the application of an electric conductivity model for the SF6 gas. Measurements show that the electric conductivity in the SF6 gas has a nonlinear dependency on temperature, electric field and gas pressure. From these measurements, an electric conductivity model was developed. Both methods are compared by simulation results, where different parameters and conditions are considered, to investigate the potential of the electric conductivity model as a computationally less expensive alternative.

Findings

The simulation results of both simulation approaches show similar results, proving the electric conductivity for the SF6 gas as a valid alternative. Using the electro-thermal model approach with the application of the electric conductivity model enables a solution time up to six times faster compared to the ion-drift-diffusion model. The application of the model allows to examine the influence of different parameters such as temperature and gas pressure on the electric field distribution in the GIL, whereas the ion-drift-diffusion model enables to investigate the distribution of homo- and heteropolar charges in the insulation gas.

Originality/value

This work presents numerical simulation models for high voltage direct current GIL, where the conduction in the SF6 gas is described more precisely compared to a definition of a constant electric conductivity value for the insulation gas. The electric conductivity model for the SF6 gas allows for consideration of the current–voltage characteristics of the gas, is computationally less expensive compared to an ion-drift diffusion model and needs considerably less solution time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 February 2023

Soumyajyoti Datta, Rohit Kapoor and Peeyush Mehta

Outpatient care delivery is one of the key revenue sources of a hospital which plays a salient role in timely care delivery. The key purpose of the study is to propose a…

Abstract

Purpose

Outpatient care delivery is one of the key revenue sources of a hospital which plays a salient role in timely care delivery. The key purpose of the study is to propose a multi-objective simulation-based decision support model that considers the cost of care delivery and patient dissatisfaction as its two key conflicting objectives. Patient dissatisfaction considers service fairness. Patient idiosyncrasies such as no-show, unpunctuality and balking have been considered in the model involving multiple classes of patients.

Design/methodology/approach

A model has been designed using data collected from field investigations. In the first stage, queuing theory based discrete event simulation model has been developed. Genetic algorithm has been used to solve the scalarized problem and obtain actionable insights. In the second stage, non-dominated sorting genetic algorithm II (NSGA-II) has been involved to achieve the Pareto optimal fronts considering equal priority of the two objectives.

Findings

The computational results considering various parameter settings can help in efficient resource planning while ensuring better care delivery. The model proposed in the study provides structural insights on the business strategy of healthcare service providers on optimizing the dual goals of care delivery cost and service fairness.

Originality/value

The study is one of the early works that helps to improve the care delivery process by taking into consideration the environmental factors as well as service fairness. The study demonstrates the usage of simulation-based multi-objective optimization to provide a more sustainable patient centric care delivery.

Details

Business Process Management Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 22 May 2023

Mohammed Farhan, Caroline C. Krejci and David E. Cantor

The purpose of this research is to examine how a change in team dynamics impacts an individual's motivation to engage in helping behavior and operational performance.

Abstract

Purpose

The purpose of this research is to examine how a change in team dynamics impacts an individual's motivation to engage in helping behavior and operational performance.

Design/methodology/approach

An online vignette experiment and a hybrid discrete event and agent-based simulation model are used.

Findings

Study findings demonstrate how a non-core worker's perception of team dynamics influence engagement in helping behavior and system performance.

Originality/value

This study provides a further understanding on how team members react to changes in team processes. This study theorizes on how an individual team member responds to fairness concerns. This study also advances our understanding of the critical importance of helping behavior in a retail logistics setting. This research illustrates how the theory of strategic core and procedural justice literature can be adopted to explain team dynamics in supply chain management.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 9
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 28 June 2023

Florian Cramer and Christian Fikar

Short food supply chains have the potential to facilitate the transition to more sustainable food systems. Related distribution processes, however, can be challenging for…

Abstract

Purpose

Short food supply chains have the potential to facilitate the transition to more sustainable food systems. Related distribution processes, however, can be challenging for smallholder and family farmers. To extend the market reach of farmers without the need for extensive investments, crowd logistics (CL) can be used. The purpose of this paper is to explore the benefits and trade-offs of implementing CL platforms in short food supply chains (SFSCs).

Design/methodology/approach

A decision support system (DSS) based on agent-based and discrete event simulation (DES) modelling is developed, which closely approximates the behaviour of customers and distribution processes at outlets. Different scenarios are explored to evaluate the potential of CL in rural and urban settings using the example of regions from Bavaria, Germany.

Findings

Results show that CL can be used to increase the reach of farmers in SFSCs at the cost of minor food quality losses. Moreover, a difference between urban and rural settings is noted: An urban scenario requires less investment in the driver base, whereas the rural scenario shows a higher potential to increase market reach.

Originality/value

Platform-based food delivery services are still mostly unexplored in the context of SFSCs. This research shows that platform services such as CL can be used to support local agriculture and facilitate the distribution of perishable food items, introducing a simulation-based DSS and providing detailed results on various application settings; this research serves as a steppingstone to facilitate successful real-world implementations and encourage further research.

Details

International Journal of Retail & Distribution Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 25 August 2023

Damianos P. Sakas, Nikolaos T. Giannakopoulos, Marina C. Terzi, Ioannis Dimitrios G. Kamperos and Nikos Kanellos

The paper’s main goal is to examine the relationship between the video marketing of financial technologies (Fintechs) and their vulnerable website customers’ brand engagement in…

Abstract

Purpose

The paper’s main goal is to examine the relationship between the video marketing of financial technologies (Fintechs) and their vulnerable website customers’ brand engagement in the ongoing coronavirus disease 2019 (COVID-19) crisis.

Design/methodology/approach

To extract the required outcomes, the authors gathered data from the five biggest Fintech websites and YouTube channels, performed multiple linear regression models and developed a hybrid (agent-based and dynamic) model to assess the performance connection between their video marketing analytics and vulnerable website customers’ brand engagement.

Findings

It has been found that video marketing analytics of Fintechs’ YouTube channels are a decisive factor in impacting their vulnerable website customers’ brand engagement and awareness.

Research limitations/implications

By enhancing video marketing analytics of their YouTube channels, Fintechs can achieve greater levels of vulnerable website customers’ engagement and awareness. Higher levels of vulnerable customers’ brand engagement and awareness tend to decrease their vulnerability by enhancing their financial knowledge and confidence.

Practical implications

Fintechs should aim to increase the number of total videos on their YouTube channels and provide videos that promote their customers’ knowledge of their services to increase their brand engagement and awareness, thus reducing their vulnerability. Moreover, Fintechs should be aware not to over-post videos because they will be in an unfavorable position against their competitors.

Originality/value

This research offers valuable insights regarding the importance of video marketing strategies for Fintechs in promoting their vulnerable website customers’ brand awareness during crisis periods.

Details

International Journal of Bank Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-2323

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

195

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 26 June 2023

Jiangtao Hong, Yuting Quan, Xinggang Tong and Kwok Hung Lau

The fresh food supply chain industry faces significant challenges in risk management because of the complexity, immature development and unpredictable external environment of…

Abstract

Purpose

The fresh food supply chain industry faces significant challenges in risk management because of the complexity, immature development and unpredictable external environment of imported fresh food supply chains (IFFSCs). This study aims to identify specific risk factors in IFFSCs, demonstrate how these risks are transmitted within the system and provide an analytical framework for managing these risks.

Design/methodology/approach

A total of 15 risk factors for IFFSCs through extensive literature review and expert consultation are identified and classified into seven levels using interpretive structural modeling (ISM) to demonstrate the risk transmission path. Fuzzy Matrice d’Impacts Croises-Multiplication Appliance Classement (MICMAC) analysis is then used to analyze the role of each factor.

Findings

The interactions of the 15 identified risk factors of IFFSCs, classified into seven levels, are visualized using ISM. The fuzzy MICMAC analysis classifies the factors into four groups, namely, dependent, independent, linkage and autonomous factors, and identifies the relatively critical risk factors in the system.

Research limitations/implications

The findings of this research provide a clear framework for enterprises operating in IFFSCs to understand the specific risks they may face and how these risks interact within the system. The fuzzy MICMAC analysis also classifies and highlights critical risk factors in the system to facilitate the formulation of appropriate mitigation measures.

Originality/value

This study provides enterprises in IFFSCs with a comprehensive understanding of how the risks can be effectively managed and a basis for further exploration. The theoretical model constructed is also a new effort to address the issues of risk in IFFSCs. The ISM and the fuzzy MICMAC analysis offer clear insights for researchers and enterprises to grasp complex concepts.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 2
Type: Research Article
ISSN: 0885-8624

Keywords

1 – 10 of over 1000