Search results

1 – 10 of over 3000
Article
Publication date: 26 January 2023

Demet Canpolat Tosun and Yasemin Işık

It is possible with classical path planning algorithms to plan a path in a static environment if the instant position of the vehicle is known and the target and obstacle positions…

Abstract

Purpose

It is possible with classical path planning algorithms to plan a path in a static environment if the instant position of the vehicle is known and the target and obstacle positions are constant. In a dynamic case, these methods used for the static environment are insufficient. The purpose of this study is to find a new method that can provide a solution to the four-rotor unmanned aerial vehicle (UAV) path planning problem in static and dynamic environments.

Design/methodology/approach

As a solution to the problem within the scope of this study, there is a new hybrid method in which the global A* algorithm and local the VFH+ algorithm are combined.

Findings

The performance of the designed algorithm was tested in different environments using the Gazebo model of a real quadrotor and the robot operating system (ROS), which is the widely used platform for robotic applications. Navigation stacks developed for mobile robots on the ROS platform were also used for the UAV, and performance benchmarks were carried out. From the proposed hybrid algorithm, remarkable results were obtained in terms of both planning and implementation time compared to ROS navigation stacks.

Originality/value

This study proposes a new hybrid approach to the path planning problem for UAVs operating in both static and dynamic environments.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 March 2022

Shifa Sulaiman and A.P. Sudheer

Most of the conventional humanoid modeling approaches are not successful in coupling different branches of the tree-type humanoid robot. In this paper, a tree-type upper body…

Abstract

Purpose

Most of the conventional humanoid modeling approaches are not successful in coupling different branches of the tree-type humanoid robot. In this paper, a tree-type upper body humanoid robot with mobile base is modeled. The main purpose of this work is to model a non holonomic mobile platform and to develop a hybrid algorithm for avoiding dynamic obstacles. Decoupled Natural Orthogonal Complement methodology effectively combines different branches of the humanoid body during dynamic analysis. Collision avoidance also plays an important role along with modeling methods for successful operation of the upper body wheeled humanoid robot during real-time operations. The majority of path planning algorithms is facing problems in avoiding dynamic obstacles during real-time operations. Hence, a multi-fusion approach using a hybrid algorithm for avoiding dynamic obstacles in real time is introduced.

Design/methodology/approach

The kinematic and dynamic modeling of a humanoid robot with mobile platform is done using screw theory approach and Newton–Euler formulations, respectively. Dynamic obstacle avoidance using a novel hybrid algorithm is carried out and implemented in real time. D star lite and a geometric-based hybrid algorithms are combined to generate the optimized path for avoiding the dynamic obstacles. A weighting factor is added to the D star lite variant to optimize the basic version of D star lite algorithm. Lazy probabilistic road map (PRM) technique is used for creating nodes in configuration space. The dynamic obstacle avoidance is experimentally validated to achieve the optimum path.

Findings

The path obtained using the hybrid algorithm for avoiding dynamic obstacles is optimum. Path length, computational time, number of expanded nodes are analysed for determining the optimality of the path. The weighting function introduced along with the D star lite algorithm decreases computational time by decreasing the number of expanding nodes during path generation. Lazy evaluation technique followed in Lazy PRM algorithm reduces computational time for generating nodes and local paths.

Originality/value

Modeling of a tree-type humanoid robot along with the mobile platform is combinedly developed for the determination of the kinematic and dynamic equations. This paper also aims to develop a novel hybrid algorithm for avoiding collision with dynamic obstacles with minimal computational effort in real-time operations.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 July 2021

Xiaohuan Liu, Degan Zhang, Ting Zhang, Jie Zhang and Jiaxu Wang

To solve the path planning problem of the intelligent driving vehicular, this paper designs a hybrid path planning algorithm based on optimized reinforcement learning (RL) and…

Abstract

Purpose

To solve the path planning problem of the intelligent driving vehicular, this paper designs a hybrid path planning algorithm based on optimized reinforcement learning (RL) and improved particle swarm optimization (PSO).

Design/methodology/approach

First, the authors optimized the hyper-parameters of RL to make it converge quickly and learn more efficiently. Then the authors designed a pre-set operation for PSO to reduce the calculation of invalid particles. Finally, the authors proposed a correction variable that can be obtained from the cumulative reward of RL; this revises the fitness of the individual optimal particle and global optimal position of PSO to achieve an efficient path planning result. The authors also designed a selection parameter system to help to select the optimal path.

Findings

Simulation analysis and experimental test results proved that the proposed algorithm has advantages in terms of practicability and efficiency. This research also foreshadows the research prospects of RL in path planning, which is also the authors’ next research direction.

Originality/value

The authors designed a pre-set operation to reduce the participation of invalid particles in the calculation in PSO. And then, the authors designed a method to optimize hyper-parameters to improve learning efficiency of RL. And then they used RL trained PSO to plan path. The authors also proposed an optimal path evaluation system. This research also foreshadows the research prospects of RL in path planning, which is also the authors’ next research direction.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 June 2013

Yang Gao, Shu‐dong Sun, Da‐wei Hu and Lai‐jun Wang

Path planning in unknown or partly unknown environment is a quite complex task, partly because it is an evolving globally optimal path affected by the motion of the robot and the…

Abstract

Purpose

Path planning in unknown or partly unknown environment is a quite complex task, partly because it is an evolving globally optimal path affected by the motion of the robot and the changing of environmental information. The purpose of this paper is to propose an online path planning approach for a mobile robot, which aims to provide a better adaptability to the motion of the robot and the changing of environmental information.

Design/methodology/approach

This approach treats the globally optimal path as a changing state and estimates it online with two steps: prediction step, which predicts the globally optimal path based on the motion of the robot; and updating step, which uses the up‐to‐date environmental information to refine the prediction.

Findings

Simulations and experiments show that this approach needs less time to reach the destination than some classical algorithms, provides speedy convergence and can adapt to unexpected obstacles or very limited prior environmental information. The better performances of this approach have been proved in both field and indoor environments.

Originality/value

Compared with previous works, the paper's approach has three main contributions. First, it can reduce the time consumed in reaching the destination by adopting an online path planning strategy. Second, it can be applied in such environments as those with unexpected obstacles or with only limited prior environmental information. Third, both motion error of the robot and the changing of environmental information are considered, so that the global adaptability to them is improved.

Details

Industrial Robot: An International Journal, vol. 40 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 15 July 2022

Jiansen Zhao, Xin Ma, Bing Yang, Yanjun Chen, Zhenzhen Zhou and Pangyi Xiao

Since many global path planning algorithms cannot achieve the planned path with both safety and economy, this study aims to propose a path planning method for unmanned vehicles…

Abstract

Purpose

Since many global path planning algorithms cannot achieve the planned path with both safety and economy, this study aims to propose a path planning method for unmanned vehicles with a controllable distance from obstacles.

Design/methodology/approach

First, combining satellite image and the Voronoi field algorithm (VFA) generates rasterized environmental information and establishes navigation area boundary. Second, establishing a hazard function associated with navigation area boundary improves the evaluation function of the A* algorithm and uses the improved A* algorithm for global path planning. Finally, to reduce the number of redundant nodes in the planned path and smooth the path, node optimization and gradient descent method (GDM) are used. Then, a continuous smooth path that meets the actual navigation requirements of unmanned vehicle is obtained.

Findings

The simulation experiment proved that the proposed global path planning method can realize the control of the distance between the planned path and the obstacle by setting different navigation area boundaries. The node reduction rate is between 33.52% and 73.15%, and the smoothness meets the navigation requirements. This method is reasonable and effective in the global path planning process of unmanned vehicle and can provide reference to unmanned vehicles’ autonomous obstacle avoidance decision-making.

Originality/value

This study establishes navigation area boundary for the environment based on the VFA and uses the improved A* algorithm to generate a navigation path that takes into account both safety and economy. This study also proposes a method to solve the redundancy of grid environment path nodes and large-angle steering and to smooth the path to improve the applicability of the proposed global path planning method. The proposed global path planning method solves the requirements of path safety and smoothness.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 22 August 2008

Ya‐Chun Chang and Yoshio Yamamoto

This paper aims to present a hybrid path planning algorithm which is designed for use of autonomous vehicles in indoor environments. The approach mainly contributes the ability of…

Abstract

Purpose

This paper aims to present a hybrid path planning algorithm which is designed for use of autonomous vehicles in indoor environments. The approach mainly contributes the ability of generating a safe and smooth collision avoidance path for attaining a desired position in an unknown and obstructed environment.

Design/methodology/approach

The hybrid planner is based on potential field method and Voronoi diagram approach, and it is represented with the ability of concurrent map building and autonomous navigation.

Findings

The possibility of controlling the look‐ahead distance allows the mobile robot to smartly control the velocity for creating a smooth trajectory autonomously. The dead‐lock problem is solved by defining necessary sub‐goals between targets on the constructed map.

Originality/value

The system controller (look‐ahead control) with the potential field method allows the robot to generate a smooth and safe path for an expected position. Only essential exploration of unknown environment is performed since the approach constrains the mobile robot to explore a safe and sub‐optimal route towards a destination.

Details

Industrial Robot: An International Journal, vol. 35 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 September 2022

Chunming Tong, Zhenbao Liu, Qingqing Dang, Jingyan Wang and Yao Cheng

This paper aims to propose an environmentally adaptive trajectory planning system considering the dynamic characteristics of unmanned aerial vehicles (UAVs) and the distance…

Abstract

Purpose

This paper aims to propose an environmentally adaptive trajectory planning system considering the dynamic characteristics of unmanned aerial vehicles (UAVs) and the distance between obstacles and the UAV. The system generates a smooth and safe flight trajectory online.

Design/methodology/approach

First, the hybrid A* search method considering the dynamic characteristics of the quadrotor is used to find the collision-free initial trajectory. Then, environmentally adaptive velocity cost is designed for environment-adaptive trajectory optimization using environmental gradient data. The proposed method adaptively adjusts the autonomous flight speed of the UAV. Finally, the initial trajectory is applied to the multi-layered optimization framework to make it smooth and dynamically viable.

Findings

The feasibility of the designed system is validated by online flight experiments, which are in unknown, complex situations.

Practical implications

The proposed trajectory planning system is integrated into a vision-based quadrotor platform. It is easily implementable onboard and computationally efficient.

Originality/value

A hybrid A* path searching method is proposed to generate feasible motion primitives by dispersing the input space uniformly. The proposed method considers the control input of the UAV and the search time as the heuristic cost. Therefore, the proposed method can provide an initial path with the minimum flying time and energy loss that benefits trajectory optimization. The environmentally adaptive velocity cost is proposed to adaptively adjust the flight speed of the UAV using the distance between obstacles and the UAV. Furthermore, a multi-layered environmentally adaptive trajectory optimization framework is proposed to generate a smooth and safe trajectory.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 January 2019

Balamurali Gunji, Deepak B.B.V.L., Saraswathi M.B.L. and Umamaheswara Rao Mogili

The purpose of this paper is to obtain an optimal mobile robot path planning by the hybrid algorithm, which is developed by two nature inspired meta-heuristic algorithms, namely…

Abstract

Purpose

The purpose of this paper is to obtain an optimal mobile robot path planning by the hybrid algorithm, which is developed by two nature inspired meta-heuristic algorithms, namely, cuckoo-search and bat algorithm (BA) in an unknown or partially known environment. The cuckoo-search algorithm is based on the parasitic behavior of the cuckoo, and the BA is based on the echolocation behavior of the bats.

Design/methodology/approach

The developed algorithm starts by sensing the obstacles in the environment using ultrasonic sensor. If there are any obstacles in the path, the authors apply the developed algorithm to find the optimal path otherwise reach the target point directly through diagonal distance.

Findings

The developed algorithm is implemented in MATLAB for the simulation to test the efficiency of the algorithm for different environments. The same path is considered to implement the experiment in the real-world environment. The ARDUINO microcontroller along with the ultrasonic sensor is considered to obtain the path length and time of travel of the robot to reach the goal point.

Originality/value

In this paper, a new hybrid algorithm has been developed to find the optimal path of the mobile robot using cuckoo search and BAs. The developed algorithm is tested with the real-world environment using the mobile robot.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 13 June 2019

Samia Ben Amarat and Peng Zong

This paper aims to present a comprehensive review in major research areas of unmanned air vehicles (UAVs) navigation, i.e. three degree-of-freedom (3D) path planning, routing…

1095

Abstract

Purpose

This paper aims to present a comprehensive review in major research areas of unmanned air vehicles (UAVs) navigation, i.e. three degree-of-freedom (3D) path planning, routing algorithm and routing protocols. The paper is further aimed to provide a meaningful comparison among these algorithms and methods and also intend to find the best ones for a particular application.

Design/methodology/approach

The major UAV navigation research areas are further classified into different categories based on methods and models. Each category is discussed in detail with updated research work done in that very domain. Performance evaluation criteria are defined separately for each category. Based on these criteria and research challenges, research questions are also proposed in this work and answered in discussion according to the presented literature review.

Findings

The research has found that conventional and node-based algorithms are a popular choice for path planning. Similarly, the graph-based methods are preferred for route planning and hybrid routing protocols are proved better in providing performance. The research has also found promising areas for future research directions, i.e. critical link method for UAV path planning and queuing theory as a routing algorithm for large UAV networks.

Originality/value

The proposed work is a first attempt to provide a comprehensive study on all research aspects of UAV navigation. In addition, a comparison of these methods, algorithms and techniques based on standard performance criteria is also presented the very first time.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of over 3000