Search results

1 – 10 of 100
Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

24

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 January 2024

Fateh Mebarek-Oudina, Ines Chabani, Hanumesh Vaidya and Abdul Aziz I. Ismail

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine…

Abstract

Purpose

This paper aims to present a numerical study that investigates the flow of MgO-Al2O3/water hybrid nanofluid inside a porous elliptical-shaped cavity, in which we aim to examine the performance of this thermal system when exposed to a magnetic field via heat transfer features and entropy generation.

Design/methodology/approach

The configuration consists of the hybrid nanofluid out layered by a cold ellipse while it surrounds a non-square heated obstacle; the thermal structure is under the influence of a horizontal magnetic field. This problem is implemented in COMSOL multiphysics, which solves the related equations described by the “Darcy-Forchheimer-Brinkman” model through the finite element method.

Findings

The results illustrated as streamlines, isotherms and average Nusselt number, along with the entropy production, are given as functions of: the volume fraction, and shape factor to assess the behaviour of the properties of the nanoparticles. Darcy number and porosity to designate the impact of the porous features of the enclosure, and finally the strength of the magnetic induction described as Hartmann number. The outcomes show the increased pattern of the thermal and dynamical behaviour of the hybrid nanofluid when augmenting the concentration, shape factor, porosity and Darcy number; however, it also engenders increased formations of irreversibilities in the system that were revealed to enhance with the permeability and the great properties of the nanofluid. Nevertheless, this thermal enhanced pattern is shown to degrade with strong Hartmann values, which also reduced both thermal and viscous entropies. Therefore, it is advised to minimize the magnetic influence to promote better heat exchange.

Originality/value

The investigation of irreversibilities in nanofluids heat transfer is an important topic of research with practical implications for the design and optimization of heat transfer systems. The study’s findings can help improve the performance and efficiency of these systems, as well as contribute to the development of sustainable energy technologies. The study also offers an intriguing approach that evaluates entropy growth in this unusual configuration with several parameters, which has the potential to transform our understanding of complicated fluid dynamics and thermodynamic processes, and at the end obtain the best thermal configuration possible.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 November 2023

Samrat Hansda, Anirban Chattopadhyay and Swapan K. Pandit

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study…

Abstract

Purpose

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study is to comprehend the intricate phenomena of double diffusion by investigating the dispersion behavior of Al2O3, CuO, and Ag nanoparticles in water.

Design/methodology/approach

The cabinet design consists of two horizontal walls and two curved walls with the lower border divided into a heated and concentrated region of length b and the remaining sections are adiabatic. The vertical borders are cold and low concentration, while the upper border is adiabatic. Two cavity configurations such as convex and concave are considered. A uniform porous medium is taken within the ternary hybrid nanofluid. This has been characterized by the Brinkman-extended Darcy model. Thermosolutal phenomena are governed by the Navier-Stokes equations and are solved by adopting a higher-order compact scheme.

Findings

The present study focuses on exploring the influence of several well-defined parameters, including Rayleigh number, Darcy number, Lewis number, Buoyancy ratio number, nanoparticle volume concentration and heater size. The results indicate that the ternary hybrid nanofluid outperforms both the mono and hybrid nanofluids in all considered aspects.

Originality/value

This study brings forth a significant contribution by uncovering novel flow features that have previously remained unexplored. By addressing a well-defined problem, the work provides valuable insights into the enhancement of thermal transport, with direct implications for diverse engineering devices such as solar collectors, heat exchangers and microelectronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 July 2023

Amit Kumar, Abhipsa P. Dash, Atul Kumar Ray, Priyabrata Sethy and Idamakanti Kasireddy

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different…

Abstract

Purpose

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different shapes of nanoparticles (copper [Cu] and aluminium oxide [Al2O3]) in the base fluid (water [H2O]). The influence of different shapes (sphere, brick, cylinder, platelets and blades) of nanoparticle in water-based hybrid nanofluid is also investigated.

Design/methodology/approach

To analyse the nanomaterial, the flow model is established, and in doing so, the Prandtl’s boundary layer theory is incorporated into the present model. The bvp4c approach, i.e. finite difference method, is used to find the numerical solution of differential equations that is controlling the fluid flow. The effect of relevant flow parameters on nanofluid temperature and velocity profile is demonstrated in detailed explanations using graphs and bar charts, whereas numerical results for Nusselt number and the skin’s coefficient for various form parameters are presented in tabular form.

Findings

The rate of heat transfer is least for spherical-shaped nanoparticle because of its smoothness, symmetricity and isotropic behaviour. The rate of heat transfer is highest for blade-shaped nanoparticles as compared to other shapes (brick, cylindrical and platelet) of nanoparticles because the blade-shaped nanoparticles causes comparatively more turbulence flow in the nanofluid than other shapes of nanoparticle. Heat generation affects the temperature distribution and, hence, the particle deposition rate. The absorption of heat extracts heat and reduce the temperature across the rotating sphere. The heat generation/absorption parameter plays an important role in establishing and maintaining the temperature around the rotating sphere.

Research limitations/implications

The numerical study is valid with the exception of the fluctuation in density that results in the buoyancy force and the functional axisymmetric nanofluid transport has constant thermophysical characteristics. In addition, this investigation is also constrained by the assumptions that there is no viscosity dissipation, no surface slippage and no chemically activated species. The hybrid nanofluid Al2O3–Cu/H2O is an incompressible and diluted suspension. The single-phase hybrid nanofluid model is considered in which the relative velocity of water (H2O) and hybrid nanoparticles (Al2O3–Cu) is the same and they are in a state of thermal equilibrium.

Practical implications

Study on convective flow across a revolving sphere has its applications found in electrolysis management, polymer deposition, medication transfer, cooling of spinning machinery segments, spin-stabilized missiles and other industrial and technical applications.

Originality/value

The originality of the study is to investigate the effect of shape factor on the flow of electrically conducting hybrid nanofluid past a rotating sphere with heat generation/absorption and magnetic field. The results are validated and provide extremely positive balance with the recognised articles. The results of the study provide many appealing applications that merit further study of the problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

27

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2024

Anup Kumar, Bhupendra Kumar Sharma, Bandar Bin-Mohsen and Unai Fernandez-Gamiz

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach…

Abstract

Purpose

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach their energy needs in areas where traditional fuels are in use. This study aims to examine the sensitivity analysis for optimizing the heat transfer and entropy generation in the Jeffrey magnetohydrodynamic hybrid nanofluid flow under the influence of motile gyrotactic microorganisms with solar radiation in the parabolic trough solar collectors. The influences of viscous dissipation and Ohmic heating are also considered in this investigation.

Design/methodology/approach

Governing partial differential equations are derived via boundary layer assumptions and nondimensionalized with the help of suitable similarity transformations. The resulting higher-order coupled ordinary differential equations are numerically investigated using the Runga-Kutta fourth-order numerical approach with the shooting technique in the computational MATLAB tool.

Findings

The numerical outcomes of influential parameters are presented graphically for velocity, temperature, entropy generation, Bejan number, drag coefficient and Nusselt number. It is observed that escalating the values of melting heat parameter and the Prandl number enhances the Nusselt number, while reverse effect is observed with an enhancement in the magnetic field parameter and bioconvection Lewis number. Increasing the magnetic field and bioconvection diffusion parameter improves the entropy and Bejan number.

Originality/value

Nanotechnology has captured the interest of researchers due to its engrossing performance and wide range of applications in heat transfer and solar energy storage. There are numerous advantages of hybrid nanofluids over traditional heat transfer fluids. In addition, the upswing suspension of the motile gyrotactic microorganisms improves the hybrid nanofluid stability, enhancing the performance of the solar collector. The use of solar energy reduces the industry’s dependency on fossil fuels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2024

Prabir Barman, Srinivasa Rao Pentyala and B.V. Rathish Kumar

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and…

Abstract

Purpose

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and solid walls irreversibly generate entropy. This numerical study aims to investigate convective heat transfer together with entropy generation in a partially heated wavy porous cavity filled with a hybrid nanofluid.

Design/methodology/approach

The governing equations are nondimensionalized and the domain is transformed into a unit square. A second-order finite difference method is used to have numerical solutions to nondimensional unknowns such as stream function and temperature. This numerical computation is conducted to explore a wide range of regulating parameters, e.g. hybrid nano-particle volume fraction (σ = 0.1%, 0.33%, 0.75%, 1%, 2%), Rayleigh–Darcy number (Ra = 10, 102, 103), dimensionless length of the heat source (ϵ = 0.25, 0.50,1.0) and amplitude of the wave (a = 0.05, 0.10, 0.15) for a number of undulations (N = 1, 3) per unit length.

Findings

A thorough analysis is conducted to analyze the effect of multiple factors such as thermal convective forces, heat source, surface corrugation factors, nanofluid volume fraction and other parameters on entropy generation. The flow and temperature fields are studied through streamlines and isotherms. The average Bejan number suggested that entropy generation is entirely dominated by irreversibility due to heat transport at Ra = 10, and the irreversibility due to the viscosity effect is severe at Ra = 103, but the increment in s augments irreversibility due to the viscosity effect over the heat transport at Ra = 102.

Originality/value

To the best of the authors’ knowledge, this numerical study, for the first time, analyzes the influence of surface corrugation on the entropy generation related to the cooling of a partial heat source by the convection of a hybrid nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 100