Search results

1 – 10 of 18
Article
Publication date: 4 June 2024

Songhao Wang, Zhenghua Qian and Yan Shang

The paper aims to the size-dependent analysis of functionally graded materials in thermal environment based on the modified couple stress theory using finite element method.

Abstract

Purpose

The paper aims to the size-dependent analysis of functionally graded materials in thermal environment based on the modified couple stress theory using finite element method.

Design/methodology/approach

The element formulation is developed within the framework of the penalty unsymmetric finite element method (FEM) in that the C1 continuity requirement is satisfied in weak sense and thus, C0 continuous interpolation enhanced by independent nodal rotation is employed as the test function. Meanwhile, the trial function is designed based on the stress functions and the weighted residual method. Besides, the special Gauss quadrature scheme is employed for integrals of matrices in accordance with the graded variation of the material properties.

Findings

The numerical results reveal that in thermal environment, functionally graded materials exhibit better bending performance compared to homogeneous materials, Moreover, the findings also indicate that with an increase in MLSP, the natural frequencies of out-of-plane modes gradually increase, while the natural frequencies of in-plane modes show much less variation, leading to a mode switch phenomenon.

Originality/value

The work provides an efficient numerical tool for analyzing and designing the functionally graded structures in thermal environment in practical engineering applications.

Details

Engineering Computations, vol. 41 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 May 2024

Baharak Hooshyarfarzin, Mostafa Abbaszadeh and Mehdi Dehghan

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Abstract

Purpose

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Design/methodology/approach

First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.

Findings

Numerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.

Originality/value

This is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 September 2024

Gauthier Derenty-Camenen, Alexis Lepot, Olivier Chadebec, Olivier Pinaud, Laure-Line Rouve and Steeve Zozor

The purpose of this paper is to propose a compact model to represent the magnetic field outside the sources. This model provides the multipolar ordering of a spherical harmonic…

Abstract

Purpose

The purpose of this paper is to propose a compact model to represent the magnetic field outside the sources. This model provides the multipolar ordering of a spherical harmonic expansion far from the source while being valid in its close proximity.

Design/methodology/approach

The authors investigate equivalent surface sources that enable to compute the field very close to any chosen surface that encloses the source. Then the authors present a method to find an appropriate initial basis and its associated inner product that allow to construct multipolar harmonic bases for these equivalent sources, where any vector of order k produces a field that decreases at least as fast as the field produced by a multipole of order k. Finally, those bases are numerically implemented to demonstrate their performances, both far from the source and in its close proximity.

Findings

The charge distribution and normal dipole distribution are well-suited to construct multipolar harmonic bases of equivalent sources. These bases can be described by as few parameters as the decreasing spherical harmonic expansion. Comparison with other numerical models shows its ability to compute the field both far from the source and close to it.

Originality/value

A basis for normal dipole distribution has already been described in the literature. This paper presents a general method to construct a multipolar basis for equivalent sources and uses it to construct a basis for single-layer potential.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 August 2024

Ersin Bahar and Gurhan Gurarslan

The purpose of this study is to introduce a new numerical scheme with no stability condition and high-order accuracy for the solution of two-dimensional coupled groundwater flow…

Abstract

Purpose

The purpose of this study is to introduce a new numerical scheme with no stability condition and high-order accuracy for the solution of two-dimensional coupled groundwater flow and transport simulation problems with regular and irregular geometries and compare the results with widely acceptable programs such as Modular Three-Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) and Modular Three-Dimensional Multispecies Transport Model (MT3DMS).

Design/methodology/approach

The newly proposed numerical scheme is based on the method of lines (MOL) approach and uses high-order approximations both in space and time. Quintic B-spline (QBS) functions are used in space to transform partial differential equations, representing the relevant physical phenomena in the system of ordinary differential equations. Then this system is solved with the DOPRI5 algorithm that requires no stability condition. The obtained results are compared with the results of the MODFLOW and MT3DMS programs to verify the accuracy of the proposed scheme.

Findings

The results indicate that the proposed numerical scheme can successfully simulate the two-dimensional coupled groundwater flow and transport problems with complex geometry and parameter structures. All the results are in good agreement with the reference solutions.

Originality/value

To the best of the authors' knowledge, the QBS-DOPRI5 method is used for the first time for solving two-dimensional coupled groundwater flow and transport problems with complex geometries and can be extended to high-dimensional problems. In the future, considering the success of the proposed numerical scheme, it can be used successfully for the identification of groundwater contaminant source characteristics.

Details

Engineering Computations, vol. 41 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 September 2023

Sifeddine Abderrahmani

Among different types of engineering structures, plates play a significant role. Their analysis necessitates numerical modeling with finite elements, such as triangular…

Abstract

Purpose

Among different types of engineering structures, plates play a significant role. Their analysis necessitates numerical modeling with finite elements, such as triangular, quadrangular or sector plate elements, owing to the intricate geometrical shapes and applied loads. The scope of this study is the development of a new rectangular finite element for thin plate bending based on the strain approach using Airy's function. It is called a rectangular plate finite element using Airy function (RPFEUAF) and has four nodes. Each node had three degrees of freedom: one transverse displacement (w) and two normal rotations (x, y).

Design/methodology/approach

Equilibrium conditions are used to generate the interpolation functions for the fields of strain, displacements and stresses. The evolution of the Airy function solutions yielded the selection of these polynomial bi-harmonic functions. The variational principle and the analytical integration approach are used to evaluate the basic stiffness matrix.

Findings

The numerical findings for thin plates quickly approach the Kirchhoff solution. The results obtained are compared to the analytical solution based on Kirchhoff theory.

Originality/value

The efficiency of the strain based approach using Airy's function is confirmed, and the robustness of the presented element RPFEUAF is demonstrated. Because of this, the current element is more reliable, better suited for computations and especially intriguing for modeling this kind of structure.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2024

Tian-Yu Wu, Jianfei Zhang, Yanjun Dai, Tao-Feng Cao, Kong Ling and Wen-Quan Tao

To present the detailed implementation processes of the IDEAL algorithm for two-dimensional compressible flows based on Delaunay triangular mesh, and compare the performance of…

Abstract

Purpose

To present the detailed implementation processes of the IDEAL algorithm for two-dimensional compressible flows based on Delaunay triangular mesh, and compare the performance of the SIMPLE and IDEAL algorithms for solving compressible problems. What’s more, the implementation processes of Delaunay mesh generation and derivation of the pressure correction equation are also introduced.

Design/methodology/approach

Programming completely in C++.

Findings

Five compressible examples are used to test the SIMPLE and IDEAL algorithms, and the comparison with measurement data shows good agreement. The IDEAL algorithm has much better performance in both convergence rate and stability over the SIMPLE algorithm.

Originality/value

The detail solution procedure of implementing the IDEAL algorithm for compressible flows based on Delaunay triangular mesh is presented in this work, seemingly first in the literature.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 15 September 2023

Marissa Condon

The paper proposes an efficient and insightful approach for solving neutral delay differential equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to…

Abstract

Purpose

The paper proposes an efficient and insightful approach for solving neutral delay differential equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to use a very small time step when high frequencies are present. High-frequency signals abound in communication circuits when modulated signals are involved.

Design/methodology/approach

The method involves an asymptotic expansion of the solution and each term in the expansion can be determined either from NDDE without oscillatory inputs or recursive equations. Such an approach leads to an efficient algorithm with a performance that improves as the input frequency increases.

Findings

An example shall indicate the salient features of the method. Its improved performance shall be shown when the input frequency increases. The example is chosen as it is similar to that in literature concerned with partial element equivalent circuit (PEEC) circuits (Bellen et al., 1999). Its structure shall also be shown to enable insights into the behaviour of the system governed by the differential equation.

Originality/value

The method is novel in its application to NDDE as arises in engineering applications such as those involving PEEC circuits. In addition, the focus of the method is on a technique suitable for high-frequency signals.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 November 2023

Xiaoxue Liu, Yuchen Liu, Youwei Zhang and Hanfei Guo

According to relevant research, non-uniform speed has a significant impact on the vehicle-track systems. Up to now, research work on it is still very limited. In this paper, the…

Abstract

Purpose

According to relevant research, non-uniform speed has a significant impact on the vehicle-track systems. Up to now, research work on it is still very limited. In this paper, the PEM is adopted to further transform it into a deterministic process to solve the vehicle’s problem of running at a non-uniform speed.

Design/methodology/approach

The multi-body vehicle model has 10 degrees of freedom and the track is regarded as a finite long beam supported by lumped sleepers and ballast blocks. They are connected via linear Hertz springs. The vertical track irregularity is a Gaussian stationary process in the space domain. It is transformed into a uniformly modulated nonstationary random process in the time domain with respect to the non-uniform vehicle speed. By solving the equation of motion of the coupled vehicle-track system with the pseudo-excitation method, the pseudo-response and consequently the power spectral density and the standard deviation of the structural response can be obtained.

Findings

Two kinds of vehicle braking programs are taken in the numerical example and some beneficial conclusions are drawn.

Originality/value

The pseudo-excitation method (PEM) was used to perform the random vibration analysis of a coupled non-uniform speed vehicle-track system. Transforming the track irregularity into a uniformly modulated nonstationary random process in time domain with respect to the non-uniform vehicle speed was undertaken. The pseudo-response of the coupled system is solved by applying the Newmark algorithm with constant space integral steps. The random vibration transfer mechanism of the coupled system is fully discussed.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 18