Search results

1 – 10 of 843
Article
Publication date: 23 October 2023

Francis O. Uzuegbunam, Fynecountry N. Aja and Eziyi O. Ibem

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with…

Abstract

Purpose

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with the most significant influence on the thermal comfort of hospital buildings during the hot-dry season in the hot-humid tropics of Southeast Nigeria.

Design/methodology/approach

Field measurements, physical observations and a questionnaire survey of 60 occupants of the wards of the Joint Presbyterian Hospital, Uburu in Ebonyi State, Nigeria were undertaken. The data were analysed using Humphreys' neutral temperature formula, descriptive statistics and multiple regression analysis.

Findings

The results revealed that the neutral temperature for the wards ranges from 26.2 °C to 29.9 °C, the thermal condition in the wards was not comfortable because it failed to meet the ASHRAE Standard 55 as only 65% of the occupants said the thermal condition was acceptable. The number and sizes of windows, building orientation, the presence of high-level windows and higher headroom significantly influenced the occupants' thermal comfort vote.

Practical implications

This research is valuable in estimating comfort temperature and identifying aspects that require attention in enhancing the capacity of NVH wards to effectively meet the thermal comfort needs of occupants in the hot-humid tropics of Southeast Nigeria and other regions that share similar climatic conditions.

Originality/value

To the best of the authors’ knowledge, this is the first study of this nature that provides valuable feedback for building design professionals on the performance of existing hospital buildings in meeting users' thermal comfort needs in the hot-dry season of the hot-humid tropics in Southeast Nigeria.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 July 2023

Sweety Poornima Rau Merugu and Manjunath Y.M.

This study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional…

Abstract

Purpose

This study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional and optimal concrete (including 5% GP) at high temperatures for different exposure times.

Design/methodology/approach

An experimental work is carried out to compare the conventional and optimal concrete with respect to weight loss, mechanical strength characteristics (compressive, tensile and flexural) after exposed to 100, 200 and 300 °C with 1, 2 and 3 h duration of exposure followed by cooling in furnace for 24 h and then air cooling.

Findings

The workability of granite powder modified concrete decreases as percentage of replacement increases. Compressive, tensile and flexural strengths all increased at 100 °C when compared to strength characteristics at normal temperature, regardless of the exposure conditions, and there was no weight loss noticed. For 200 and 300 °C, the strengths were decreased compared to normal temperature and an elevated temperature of 100 °C, as weight loss of concrete specimens are observed to be decreased at these temperatures. So, the optimum elevated temperature can be concluded as 100 °C.

Originality/value

Incorporating pozzolanic binder (granite powder) as cement replacement subjecting to elevated temperatures in an electric furnace is the research gap in this area. Many of the works were carried out replacing GP for fine aggregate at normal temperatures and not at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 April 2024

Ghada Karaki, Rami A. Hawileh and M.Z. Naser

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete…

Abstract

Purpose

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete (RC) walls.

Design/methodology/approach

The study performs an one-at-a-time (OAT) sensitivity analysis to assess the impact of variables defining the constitutive and parametric fire models on the wall's thermal response. Moreover, it extends the sensitivity analysis to a variance-based analysis to assess the effect of constitutive model type, fire model type and constitutive model uncertainty on the RC wall's thermal response variance. The study determines the wall’s thermal behaviour reliability considering the different constitutive models and their uncertainty.

Findings

It is found that the impact of the variability in concrete’s conductivity is determined by its temperature-dependent model, which differs for NSC and HSC. Therefore, more testing and improving material modelling are needed. Furthermore, the heating rate of the fire scenario is the dominant factor in deciding fire-resistance performance because it is a causal factor for spalling in HSC walls. And finally the reliability of wall's performance decreased sharply for HSC walls due to the expected spalling of the concrete and loss of cross-section integrity.

Originality/value

Limited studies in the current open literature quantified the impact of constitutive models on the behaviour of RC walls. No studies have examined the effect of material models' uncertainty on wall’s response reliability under fire. Furthermore, the study's results contribute to the ongoing attempts to shape performance-based structural fire engineering.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 March 2024

Hatice Merve Yanardag Erdener and Ecem Edis

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts…

Abstract

Purpose

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts on LWs’ energy efficiency-related thermal behavior was aimed, considering that studies on their relative effects are limited. LWs of varying leaf albedo, leaf transmittance and leaf area index (LAI) were studied for Antalya, Turkey for typical days of four seasons.

Design/methodology/approach

Dynamic simulations run by Envi-met were used to assess the plant characteristics’ influence on seasonal and orientation-based heat fluxes. After model calibration, a sensitivity analysis was conducted through 112 simulations. The minimum, mean and maximum values were investigated for each plant characteristic. Energy need (regardless of orientation), temperature and heat flux results were compared among different scenarios, including a building without LW, to evaluate energy efficiency and variables’ impacts.

Findings

LWs reduced annual energy consumption in Antalya, despite increasing energy needs in winter. South and west facades were particularly advantageous for energy efficiency. The impacts of leaf albedo and transmittance were more significant (44–46%) than LAI (10%) in determining LWs’ effectiveness. The changes in plant characteristics changed the energy needs up to ca 1%.

Research limitations/implications

This study can potentially contribute to generating guiding principles for architects considering LW use in their designs in hot-humid climates.

Originality/value

The plant characteristics’ relative impacts on energy efficiency, which cannot be easily determined by experimental studies, were examined using parametric simulation results regarding three plant characteristics.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

24

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 24 April 2024

Garima Nema and Karunamurthy K.

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative…

Abstract

Purpose

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative combined condenser unit over traditional individual condenser unit water heating systems.

Design/methodology/approach

The presented innovative new unit of the combined condenser heat pipe works efficiently through its improved idea and unique design, providing uniform heating to improve the heat transfer and, finally, the temperature of water increases without enhancing the cost. In this design, all these five evaporator units were connected with a single combined condenser unit in such a manner that after the condensation of heat transfer fluid vapour, it goes equally into the evaporator pipe.

Findings

The maximum temperature of hot water obtained from the combined condenser heating system was 60.6, 55.5 and 50.3°C at a water flow rate of 0.001, 0.002 and 0.003 kg/s, respectively. The first and second law thermodynamic efficiency of the combined condenser heating system were 55.4%, 60.5% and 89.0% and 2.6%, 3.7% and 4.1% at 0.001, 0.002 and 0.003 kg/s of water flow rates, respectively. The combined condenser heat pipe solar evacuated tube heating system promoting progressive performance is considered efficient and environment-friendly compared to the traditional condenser unit water heating system.

Originality/value

Innovative combined condenser heat pipe evacuated tube collector assembly was designed and developed for the study. A comparative theoretical and experimental energy-exergy performance analysis was performed of innovated collective condenser and traditional individual condenser heat pipe water heating system at various mass flow rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 November 2023

Dravesh Yadav, Ravi Sastri Ayyagari and Gaurav Srivastava

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Abstract

Purpose

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Design/methodology/approach

Finite element simulations were performed using ABAQUS 6.14. The accuracy of the numerical model was established through experimental and numerical results available in the literature. The proposed numerical model was utilised to study the effect of cavity radiation on the thermal response of aluminium hollow tubes and facade system. Different scenarios were considered to assess the applicability of the commonly used lumped capacitance heat transfer model.

Findings

The effects of cavity radiation were found to be significant for non-uniform fire exposure conditions. The maximum temperature of a hollow aluminium tube with 1-sided fire exposure was found to be 86% greater when cavity radiation was considered. Further, the time to attain critical temperature under non-uniform fire exposure, as calculated from the conventional lumped heat capacity heat transfer model, was non-conservative when compared to that predicted by the proposed simulation approach considering cavity radiation. A metal temperature of 550 °C was attained about 18 min earlier than what was calculated by the lumped heat capacitance model.

Research limitations/implications

The present study will serve as a basis for the study of the effects of cavity radiation on the thermo-mechanical response of aluminium hollow tubes and facade systems. Such thermo-mechanical analyses will enable the study of the effects of cavity radiation on the failure mechanisms of facade systems.

Practical implications

Cavity radiation was found to significantly affect the thermal response of hollow aluminium tubes and façade systems. In design processes, it is essential to consider the potential consequences of non-uniform heating situations, as they can have a significant impact on the temperature of structures. It was also shown that the use of lumped heat capacity heat transfer model in cases of non-uniform fire exposure is unsuitable for the thermal analysis of such systems.

Originality/value

This is the first detailed investigation of the effects of cavity radiation on the thermal response of aluminium tubes and façade systems for different fire exposure conditions.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Access

Year

Last 12 months (843)

Content type

Earlycite article (843)
1 – 10 of 843