Search results

1 – 10 of over 11000
Article
Publication date: 27 March 2008

P.J. Coelho and D. Aelenei

This paper sets out to implement bounded high‐order (HO) resolution schemes in a hybrid finite volume/finite element method for the solution of the radiative transfer equation.

Abstract

Purpose

This paper sets out to implement bounded high‐order (HO) resolution schemes in a hybrid finite volume/finite element method for the solution of the radiative transfer equation.

Design/methodology/approach

The hybrid finite volume/finite element method had formerly been developed using the step scheme, which is only first‐order accurate, for the spatial discretization. Here, several bounded HO resolution schemes, namely the MINMOD, CLAM, MUSCL and SMART schemes, formulated using the normalized variable diagram, were implemented using the deferred correction procedure.

Findings

The results obtained reveal an interaction between spatial and angular discretization errors, and show that the HO resolution schemes yield improved accuracy over the step scheme if the angular discretization error is small.

Research limitations/implications

Although the HO resolution schemes reduce the spatial discretization error, they do not influence the angular discretization error. Therefore, the global error is only reduced if the angular discretization error is also small.

Practical implications

The use of HO resolution schemes is only effective if the angular refinement yields low‐angular discretization errors. Moreover, spatial and angular refinement should be carried out simultaneously.

Originality/value

The paper extends a methodology formerly developed in computational fluid dynamics, and aimed at the improvement of the solution accuracy, to the hybrid finite volume/finite element method for the solution of the radiative transfer equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 September 2007

H. Naderan, M.T. Manzari and S.K. Hannani

The purpose of this paper is to investigate the performance of a specific class of highresolution central schemes in conjunction with the black oil models for hydrocarbon…

Abstract

Purpose

The purpose of this paper is to investigate the performance of a specific class of highresolution central schemes in conjunction with the black oil models for hydrocarbon reservoir simulation.

Design/methodology/approach

A generalized black oil model is adopted, in which the solubility of gas in both oil and water and evaporation of oil are considered, leading to a system of equations prone to degeneracy. A computer code is generated and three test cases are solved to evaluate the performance of various schemes in terms of accuracy and discontinuity handling.

Findings

It is shown that, although some of the central schemes are highly sensitive to the choice of Courant‐Friedrich‐Levy (CFL) number and produce overly diffusive results, a certain type of this class is insensitive to the CFL number and can conveniently handle degenerate equations appearing in the reservoir simulation. The obtained results are compared with those available in the literature, showing merits of this class of schemes in complex reservoir simulation models.

Research limitations/implications

This paper gives the one‐dimensional implementation of the above‐mentioned schemes. Extension to higher dimensional black oil model is currently under development by the authors.

Practical implications

The specific class of highresolution central schemes investigated here presents the same level of accuracy as more complicated numerical methods, yet keeping it much more simple, by avoiding Riemann solvers.

Originality/value

The highresolution central scheme used in this work has been newly developed and applied to simple scalar hyperbolic equations. It has been adopted for the black oil for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1992

B.P. LEONARD and SIMIN MOKHTARI

In 1982, Smith and Hutton published comparative results of several different convection‐diffusion schemes applied to a specially devised test problem involving…

Abstract

In 1982, Smith and Hutton published comparative results of several different convection‐diffusion schemes applied to a specially devised test problem involving near‐discontinuities and strong streamline curvature. First‐order methods showed significant artificial diffusion, whereas higher‐order methods gave less smearing but had a tendency to overshoot and oscillate. Perhaps because unphysical oscillations are more obvious than unphysical smearing, the intervening period has seen a rise in popularity of low‐order artificially diffusive schemes, especially in the numerical heat‐transfer industry. This paper presents an alternative strategy of using non‐artificially diffusive higher‐order methods, while maintaining strictly monotonic transitions through the use of simple flux‐limiter constraints. Limited third‐order upwinding is usually found to be the most cost‐effective basic convection scheme. Tighter resolution of discontinuities can be obtained at little additional cost by using automatic adaptive stencil expansion to higher order in local regions, as needed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1993

C.P.T. GROTH and J.J. GOTTLIEB

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium…

83

Abstract

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 May 2024

Wenchang Wu, Zhenguo Yan, Yaobing Min, Xingsi Han, Yankai Ma and Zhong Zhao

The purpose of the present study is to develop a new numerical framework that can predict the supersonic base flow more accurately, including the development of axisymmetrically…

Abstract

Purpose

The purpose of the present study is to develop a new numerical framework that can predict the supersonic base flow more accurately, including the development of axisymmetrically separated shear layer and recompression shock. To this end, two aspects are improved and combined, i.e. a newly self-adaptive turbulence eddy simulation (SATES) turbulence modeling method and a high-order discretization numerical scheme. Furthermore, the performance of the new numerical framework within a general-purpose PHengLEI software is assessed in detail.

Design/methodology/approach

Satisfactory prediction of the supersonic separated shear layer with unsteady wake flow is quite challenging. By using a unified turbulence model called SATES combining high-order accurate discretization numerical schemes, the present study first assesses the performance of newly developed SATES for supersonic axisymmetric separation flows. A high-order finite differencing-based compressible computational fluid dynamics (CFD) code called PHengLEI is developed and several different numerical schemes are used to investigate the effects on shock-turbulence interactions, which include the monotonic upstream-centered scheme for conservation laws (MUSCL), weighted compact nonlinear scheme (WCNS) and hybrid cell-edge and cell-node dissipative compact scheme (HDCS).

Findings

Compared with the available experimental data and the numerical predictions, the results of SATES by using high-order accurate WCNS or HDCS schemes agree better with the experiments than the results by using the MUSCL scheme. The WCNS and HDCS can also significantly improve the prediction of flow physics in terms of the instability of the annular shear layer and the evolution of the turbulent wake.

Research limitations/implications

The small deviations in the recirculation region can be found between the present numerical results and experimental data, which could be caused by the inaccurate incoming boundary layer condition and compressible effects. Therefore, a proper incoming boundary layer condition with turbulent fluctuations and compressibility effects need to be considered to further improve the accuracy of simulations.

Practical implications

The present study evaluates a high-order discretization-based SATES turbulence model for supersonic separation flows, which is quite valuable for improving the calculation accuracy of aeronautics applications, especially in supersonic conditions.

Originality/value

For the first time, the newly developed SATES turbulence modeling method combining the high-order accurate WCNS or HDCS numerical schemes is implemented on the PHengLEI software and successfully applied for the simulations of supersonic separation flows, and satisfactory results are obtained. The unsteady evolutions of the supersonic annular shear layer are analyzed, and the hairpin vortex structures are found in the simulation.

Details

Engineering Computations, vol. 41 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1999

Haidong Li and Weng Kong Chan

High order schemes, which are widely used in DNS and LES, received increasing attention in recent years with a number of variants being developed. However most of these schemes

Abstract

High order schemes, which are widely used in DNS and LES, received increasing attention in recent years with a number of variants being developed. However most of these schemes have difficulties in achieving high order accuracy near the boundary points. In order to solve this problem, the analytical discrete method (ADM) is proposed and presented in this paper. In addition, this method is convenient to construct the higher order WENO (weighted essentially non‐oscillatory) scheme. Application of the ADM‐WENO scheme to shock‐tube problems and compressible mixing flows has shown it is robust and accurate in both shock‐capturing and complex flow structures detection.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1995

B.P. Leonard, A.P. Lock and M.K. Macvean

The NIRVANA project is concerned with the development of anonoscillatory, integrally reconstructed,volume‐averaged numerical advectionscheme. The conservative, flux‐based…

Abstract

The NIRVANA project is concerned with the development of a nonoscillatory, integrally reconstructed, volume‐averaged numerical advection scheme. The conservative, flux‐based finite‐volume algorithm is built on an explicit, single‐step, forward‐in‐time update of the cell‐average variable, without restrictions on the size of the time‐step. There are similarities with semi‐Lagrangian schemes; a major difference is the introduction of a discrete integral variable, guaranteeing conservation. The crucial step is the interpolation of this variable, which is used in the calculation of the fluxes; the (analytic) derivative of the interpolant then gives sub‐cell behaviour of the advected variable. In this paper, basic principles are described, using the simplest possible conditions: pure one‐dimensional advection at constant velocity on a uniform grid. Piecewise Nth‐degree polynomial interpolation of the discrete integral variable leads to an Nth‐order advection scheme, in both space and time. Nonoscillatory results correspond to convexity preservation in the integrated variable, leading naturally to a large‐Δt generalisation of the universal limited. More restrictive TVD constraints are also extended to large Δt. Automatic compressive enhancement of step‐like profiles can be achieved without exciting “stair‐casing”. One‐dimensional simulations are shown for a number of different interpolations. In particular, convexity‐limited cubic‐spline and higher‐order polynomial schemes give very sharp, nonoscillatory results at any Courant number, without clipping of extrema. Some practical generalisations are briefly discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1997

H. Daiguji, X. Yuan and S. Yamamoto

Proposes a measure to stabilize the fourth(fifth)‐order high resolution schemes for the compressible Navier‐Stokes equations. Solves the N‐S equations of the volume fluxes and the…

Abstract

Proposes a measure to stabilize the fourth(fifth)‐order high resolution schemes for the compressible Navier‐Stokes equations. Solves the N‐S equations of the volume fluxes and the low‐Reynolds number k‐ε turbulence model in general curvilinear co‐ordinates by the delta‐form implicit finite difference methods. Notes that, in order to simulate the flow containing weak discontinuities accurately, it is very effective to use some higher‐order TVD upstream‐difference schemes in the right‐hand side of the equations of these methods; however, the higher‐order correction terms of such schemes in general amplify the numerical disturbances. Therefore, restricts these terms here by operating the minmod functions to the curvatures so as to suppress the occurrence of new inflection points. Computes an unsteady transonic turbine cascade flow where vortex streets occur from the trailing edge of blades and interact with shock waves. Finds that the stabilization measure improves not only the computational results but also the convergency for such a complicated flow problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 2/3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 November 2018

Mojtaba Moshiri and Mehrdad T. Manzari

This paper aims to numerically study the compositional flow of two- and three-phase fluids in one-dimensional porous media and to make a comparison between several upwind and…

Abstract

Purpose

This paper aims to numerically study the compositional flow of two- and three-phase fluids in one-dimensional porous media and to make a comparison between several upwind and central numerical schemes.

Design/methodology/approach

Implicit pressure explicit composition (IMPEC) procedure is used for discretization of governing equations. The pressure equation is solved implicitly, whereas the mass conservation equations are solved explicitly using different upwind (UPW) and central (CEN) numerical schemes. These include classical upwind (UPW-CLS), flux-based decomposition upwind (UPW-FLX), variable-based decomposition upwind (UPW-VAR), Roe’s upwind (UPW-ROE), local Lax–Friedrichs (CEN-LLF), dominant wave (CEN-DW), Harten–Lax–van Leer (HLL) and newly proposed modified dominant wave (CEN-MDW) schemes. To achieve higher resolution, high-order data generated by either monotone upstream-centered schemes for conservation laws (MUSCL) or weighted essentially non-oscillatory (WENO) reconstructions are used.

Findings

It was found that the new CEN-MDW scheme can accurately solve multiphase compositional flow equations. This scheme uses most of the information in flux function while it has a moderate computational cost as a consequence of using simple algebraic formula for the wave speed approximation. Moreover, numerically calculated wave structure is shown to be used as a tool for a priori estimation of problematic regions, i.e. degenerate, umbilic and elliptic points, which require applying correction procedures to produce physically acceptable (entropy) solutions.

Research limitations/implications

This paper is concerned with one-dimensional study of compositional two- and three-phase flows in porous media. Temperature is assumed constant and the physical model accounts for miscibility and compressibility of fluids, whereas gravity and capillary effects are neglected.

Practical implications

The proposed numerical scheme can be efficiently used for solving two- and three-phase compositional flows in porous media with a low computational cost which is especially useful when the number of chemical species increases.

Originality/value

A new central scheme is proposed that leads to improved accuracy and computational efficiency. Moreover, to the best of authors knowledge, this is the first time that the wave structure of compositional model is investigated numerically to determine the problematic situations during numerical solution and adopt appropriate correction techniques.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2023

Roshith Mittakolu, Sarma L. Rani and Dilip Srinivas Sundaram

A higher-order implicit shock-capturing scheme is presented for the Euler equations based on time linearization of the implicit flux vector rather than the residual vector.

Abstract

Purpose

A higher-order implicit shock-capturing scheme is presented for the Euler equations based on time linearization of the implicit flux vector rather than the residual vector.

Design/methodology/approach

The flux vector is linearized through a truncated Taylor-series expansion whose leading-order implicit term is an inner product of the flux Jacobian and the vector of differences between the current and previous time step values of conserved variables. The implicit conserved-variable difference vector is evaluated at cell faces by using the reconstructed states at the left and right sides of a cell face and projecting the difference between the left and right states onto the right eigenvectors. Flux linearization also facilitates the construction of implicit schemes with higher-order spatial accuracy (up to third order in the present study). To enhance the diagonal dominance of the coefficient matrix and thereby increase the implicitness of the scheme, wave strengths at cell faces are expressed as the inner product of the inverse of the right eigenvector matrix and the difference in the right and left reconstructed states at a cell face.

Findings

The accuracy of the implicit algorithm at Courant–Friedrichs–Lewy (CFL) numbers greater than unity is demonstrated for a number of test cases comprising one-dimensional (1-D) Sod’s shock tube, quasi 1-D steady flow through a converging-diverging nozzle, and two-dimensional (2-D) supersonic flow over a compression corner and an expansion corner.

Practical implications

The algorithm has the advantage that it does not entail spatial derivatives of flux Jacobian so that the implicit flux can be readily evaluated using Roe’s approximate Jacobian. As a result, this approach readily facilitates the construction of implicit schemes with high-order spatial accuracy such as Roe-MUSCL.

Originality/value

A novel finite-volume-based higher-order implicit shock-capturing scheme was developed that uses time linearization of fluxes at cell interfaces.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 11000