Search results

1 – 10 of 344
Article
Publication date: 1 March 1991

Martin Smith

An investigation has been carried out by Quo‐Tec Limited, on behalf of the Department of Trade and Industry's Advanced Sensors Technology Transfer Programme, to determine the…

Abstract

An investigation has been carried out by Quo‐Tec Limited, on behalf of the Department of Trade and Industry's Advanced Sensors Technology Transfer Programme, to determine the opportunities which exist in the UK transportation industries for advanced sensors. The study was concerned particularly with the identification of new business opportunities for UK Small and Medium‐sized Enterprises (SMEs). The study's boundaries were defined as the automotive, aerospace, rail and marine transportation sectors and the advanced sensor technologies of optical fibres and solid state. Piezoelectric, capacitive, inductive magnetoresistive, thin film, thick film and micromachined silicon devices were all included in the term solid state. These were highlighted because of the proven strength of UK research in many of these areas and yet, in many cases, a current lack of significant UK commercial exploitation. Through literature reviews, extensive telephone interviews and face‐to‐face discussions with key individuals in over 90 transportation companies, sensor companies and research institutions, a similar number of sensor requirements were identified. From this number, those requirements best addressed by optical or solid state sensor technology were selected. A criterion applied in the selection was that the need could be addressed by a UK SME (either alone or in collaboration) with a reasonable expectation that a sensor could be commercially available within five years. Preferably, proven technology should be available — the job of a sensor company is to develop the technology into a commercial product, not to do the fundamental research work to prove the technology itself. This article comprises some “prime” opportunities, thus identified, applicable to the automotive industry.

Details

Sensor Review, vol. 11 no. 3
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 11 July 2019

Yaser Javed, Mohtashim Mansoor and Irtiza Ali Shah

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in…

2190

Abstract

Purpose

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in materials and machining technologies, there is a large leap in the measurement techniques including the development of micro electromechanical systems (MEMS) sensors. These sensors are one to two orders smaller in magnitude than traditional sensors and combine electrical and mechanical components that are fabricated using integrated circuit batch-processing technologies. MEMS are finding enormous applications in many industrial fields ranging from medical to automotive, communication to electronics, chemical to aviation and many more with a potential market of billions of dollars. MEMS pressure sensors are now widely used devices owing to their intrinsic properties of small size, light weight, low cost, ease of batch fabrication and integration with an electronic circuit. This paper aims to identify and analyze the common pressure sensing techniques and discuss their uses and advantages. As per our understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. The purpose of this study is to summarize the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimentalaerodynamics, micro-flow control and unmanned aerial vehicle (UAV)/micro aerial vehicle (MAV) applications.

Design/methodology/approach

The first part of the paper deals with an introduction to MEMS pressure sensors and mathematical relations for its fabrication. The second part covers pressure sensing principles followed by the application of MEMS pressure sensors in five major fields of aerospace industry.

Findings

In this paper, various pressure sensing principles in MEMS and applications of MEMS technology in the aerospace industry have been reviewed. Five application fields have been investigated including: Propulsion/Turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications. Applications of MEMS sensors in the aerospace industry are quite limited due to requirements of very high accuracy, high reliability and harsh environment survivability. However, the potential for growth of this technology is foreseen due to inherent features of MEMS sensors’ being light weight, low cost, ease of batch fabrication and capability of integration with electric circuits. All these advantages are very relevant to the aerospace industry. This work is an endeavor to present a comprehensive review of such MEMS pressure sensors, which are used in the aerospace industry and have been reported in recent literature.

Originality/value

As per the author’s understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. Present work is a prime effort in summarizing the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3546

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 May 2020

Al Arsh Basheer

Smart materials also called intelligent materials are gaining importance continuously in many industries including aerospace one. It is because of the unique features of these…

1884

Abstract

Purpose

Smart materials also called intelligent materials are gaining importance continuously in many industries including aerospace one. It is because of the unique features of these materials such as self-sensing, self-adaptability, memory capabilities and manifold functions. For a long time, there is no review of smart materials. Therefore, it is considered worthwhile to write a review on this subject.

Design/methodology/approach

A thorough search of the literature was carried out through SciFinder, ScienceDirect, SpringerLink, Wiley Online Library and reputed and peer-reviewed journals. The literature was critically analyzed and a review was written.

Findings

This study describes the advances in smart materials concerning their applications in aerospace industries. The classification, working principle and recent developments (nano-smart materials) of smart materials are discussed. Besides, the future perspectives of these materials are also highlighted. Much research has not been done in this area, which needs more extensive study.

Originality/value

Certainly, this study will be highly useful for academicians, researchers and technocrats working in aerospace industries.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 1996

Anna Kochan

Highlights some of the projects being carried out by the Leti, a laboratory within the French Atomic Energy Commission. Specifically looks at the development of a miniature sensor

Abstract

Highlights some of the projects being carried out by the Leti, a laboratory within the French Atomic Energy Commission. Specifically looks at the development of a miniature sensor to detect methane in coal mines; pressure sensors in the automotive industry; the development of a miniature sensor which triggers airbag inflation in vehicles; and a sensor to measure pressure at high temperatures for use within the aeronautics industry.

Details

Sensor Review, vol. 16 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 September 2013

Robert Bogue

The purpose of this paper is to provide an introduction to micro-electromechanical systems (MEMS) sensors and their commercialisation and to consider a number of recent…

7169

Abstract

Purpose

The purpose of this paper is to provide an introduction to micro-electromechanical systems (MEMS) sensors and their commercialisation and to consider a number of recent applications, markets and product developments.

Design/methodology/approach

Following an introduction and a brief historical background to MEMS sensors and their commercialisation, the paper describes a selection of recent applications, with an emphasis on high volume uses. Various market figures are included to place these applications in a commercial context. Sensors for both physical variables and gases are considered.

Findings

The paper shows that MEMS sensor applications continue to grow in the automotive, consumer electronics and other industries, which consume many millions of sensors annually. New product developments reflect the requirement for smaller and lower-cost sensors with enhanced performance and greater functionality. Markets for physical sensors dominate but MEMS technology is making progressive inroads in the gas sensing field.

Originality/value

This article provides a timely review of a selection of recent MEMS sensor applications, markets and product developments.

Article
Publication date: 1 June 2000

George K. Chako

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in…

7260

Abstract

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in their efforts to develop and market new products. Looks at the issues from different strategic levels such as corporate, international, military and economic. Presents 31 case studies, including the success of Japan in microchips to the failure of Xerox to sell its invention of the Alto personal computer 3 years before Apple: from the success in DNA and Superconductor research to the success of Sunbeam in inventing and marketing food processors: and from the daring invention and production of atomic energy for survival to the successes of sewing machine inventor Howe in co‐operating on patents to compete in markets. Includes 306 questions and answers in order to qualify concepts introduced.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 12 no. 2/3
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1248

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 October 2016

Sergio Chiesa, Marco Fioriti and Roberta Fusaro

The purpose of this paper is to present a definition of modern configuration for a medium-altitude long-endurance unmanned aerial vehicle (MALE UAV) and its on-board systems to…

Abstract

Purpose

The purpose of this paper is to present a definition of modern configuration for a medium-altitude long-endurance unmanned aerial vehicle (MALE UAV) and its on-board systems to obtain a suitable basis for future definitions such as a possible logistic support configuration first hypothesis.

Design/methodology/approach

Starting from high-level requirements, both the UAV conceptual design and on-board systems preliminary design have been carried out through proprietary tools. Then, some peculiarities from previous studies, such as systems advanced UAV alternative energy, have been maintained and confirmed (diesel propulsion and energy storage system).

Findings

The improvement of a component of an aircraft can play a relevant role in the whole system. In the paper, it is considered how a concept of MALE UAV can evolve (this topic is considered by the authors since many years) by incorporating advanced on-board systems concepts.

Practical implications

The numerical results promote and support the use of advanced on-board system solutions and architectures to improve the effectiveness, efficiency and performance of MALE UAVs.

Originality/value

Usually, conceptual and preliminary design phases analyze in-depth the aerodynamic and structural solutions and aircraft performance. In this study, the authors aim to focus on the advanced on-board systems for MALE UAVs. This kind of aircraft is not yet a mature concept, with very few operating machines and many projects in the development phase.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 August 2023

Usman Tariq, Ranjit Joy, Sung-Heng Wu, Muhammad Arif Mahmood, Asad Waqar Malik and Frank Liou

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive…

Abstract

Purpose

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

1 – 10 of 344