Search results

1 – 10 of 19
Article
Publication date: 2 May 2023

Jasmine Vijithra A. and Gulam Nabi Alsath Mohammed

This study aims to design a compact filtering monopole antenna for 5G communication. The design is most suited for various applications within the frequency range of 2.2–3.8 GHz…

Abstract

Purpose

This study aims to design a compact filtering monopole antenna for 5G communication. The design is most suited for various applications within the frequency range of 2.2–3.8 GHz. It offers enhanced bandwidth and reasonable gain with wide-stopband performance.

Design/methodology/approach

A low-pass filter (LPF) of complementary split ring resonator (CSRR) with short-circuited stub lines is integrated with a compact defected coplanar waveguide fed truncated circular monopole ultrawideband (UWB) antenna. The reference UWB antenna etched on an FR4 substrate was coupled to the designed LPF to transform the UWB antenna into a wideband antenna. The effect of coupling is analyzed based on the real and imaginary responses of the terminal impedance (ZT) curve. Three short-circuited stub lines of asymmetric lengths are added to the CSRR LPF to suppress harmonics, thereby enhancing the stopband performance and impedance matching between the elements. The proposed filtering antenna is fabricated using a photolithography process, and the corresponding results are measured using a network analyzer (N9951A). The radiation parameters of the proposed filtering monopole antenna are tested in the anechoic chamber. The simulated/measured results are compared and are found in agreement with each other.

Findings

The proposed design suppresses 6.5f0 harmonics, resulting in wide stopband performance and increased gain selectivity at the transition edge. A peak suppression of −41 dB and an average suppression of −18 dB were attained throughout the stopband. An operating fractional bandwidth of 54.5%/143% with a peak gain of 3 dBi/5 dBi was obtained. The proposed filtering antenna supports 5G applications such as WiMAX, WLAN, n7, n38 IMT-E, n30 WCS, n40 TDD, n41 TDD, n48 TDD, n78 TDD and n90 TDD.

Originality/value

The proposed design is novel and compact and has a wide application in 5G communication. With the filter, the antenna operates in wideband, and without the filter, it operates in UWB. Besides, it offers enhanced stopband performance with high gain selectivity at the transition edge. Comparatively, a 50% improvement in bandwidth, 52% improvement in size reduction and 33% improvement in harmonic suppression are attained.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 October 2023

Lei Xiong, Hongjun Shi and Qixin Zhu

This study aims to construct a novel maximum power tracking control system for the direct drive permanent magnet synchronous generator (PMSG) of the wind energy conversion system…

Abstract

Purpose

This study aims to construct a novel maximum power tracking control system for the direct drive permanent magnet synchronous generator (PMSG) of the wind energy conversion system (WECS) to solve the following problems: how to effectively eliminate the system’s model parameter disturbances and speed up the dynamic performance of the system; and how to eliminate harmonics in WECS under different wind speeds.

Design/methodology/approach

To obtain the maximum output power of PMSG at WECS under different wind speeds, the following issues should be considered: (1) how to effectively eliminate the system’s model parameter disturbances and speed up the dynamic performance of the system; and (2) how to suppress system harmonics. For Problem 1, adding dq compensation factors to active disturbance rejection control (ADRC) for the current loop realizes the dq axis decoupling control, which speeds up the dynamic performance of the system. For Problem 2, the resonant controller is introduced into the ADRC for the current loop to suppress harmonic current in WECS under different wind speeds.

Findings

The simulation results demonstrate that the proposed control method is simpler and more reliable than conventional controllers for maximum power tracking.

Originality/value

Compared with traditional controllers, the proposed controller can speed up the dynamic performance of the system and suppress the current harmonic effectively, thus better achieving maximum power tracking.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 15 February 2024

Yumin He, Tingyun Gu, Bowen Li, Yu Wang, Dongyuan Qiu, Yang Zhang and Peicheng Qiu

Electric spring (ES) is a demand response method that can stabilize the voltage of critical loads and improve power quality, especially in a weak power grid with a high proportion…

Abstract

Purpose

Electric spring (ES) is a demand response method that can stabilize the voltage of critical loads and improve power quality, especially in a weak power grid with a high proportion of renewable energy sources. Most of existing ESs are implemented by voltage-source inverter (VSI), which has some shortcomings. For example, the DC-link capacitor limits the service life of ES, and the battery is costly and hard to recycle. Besides, conventional VSI cannot boost the voltage, which limits the application of ES in high-voltage occasions. This study aims to propose a novel scheme of ES to solve the above problems.

Design/methodology/approach

In this work, an ES topology based on current-source inverter (CSI) without a battery is presented, and a direct current control strategy is proposed. The operating principles, voltage regulation range and parameter design of the proposed ES are discussed in detail.

Findings

The proposed ES is applicable to various voltage levels, and the harmonics are effectively suppressed, which have been validated via the experimental results in both ideal and distorted grid conditions.

Originality/value

An ES topology based on battery-less CSI is proposed for the first time, which reduces the cost and prolongs the service time of ES. A novel control strategy is proposed to realize the functions of voltage regulation and harmonic suppression.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 December 2022

Yokesh V., Gulam Nabi Alsath and Malathi Kanagasabai

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end crosstalk…

Abstract

Purpose

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end crosstalk (FEXT) between the microstrip transmission lines in a printed circuit board.

Design/methodology/approach

The proposed DMS evolved with the combination of spur line (L-shaped DMS) and U-shaped DMS topologies. This technique reduces the strength of electromagnetic coupling and suppresses crosstalk by optimizing the capacitive and inductive coupling ratio between the linked microstrip lines. The practical inductance value is much more significant in DMS than in defected ground structures (DGS), but the capacitance value remains the same.

Findings

A DMS unit is etched on the aggressor microstrip line instead of the DGS circuit. Because there is no leakage via the ground plane and the circuit size is far smaller than with DGS, the enclosure issue is disregarded. DMS structures have a larger effective inductance and are resistant to electromagnetic interference. A tightly coupled transmission line structure with minimal separation between the coupled microstrip line is designed using DMS. Further research must be conducted to improve the NEXT, FEXT and spacing between the transmission lines.

Originality/value

Simulation and actual measurement results show that the proposed DMS structure can effectively suppress crosstalk by analysing the S-parameters, namely, S_12, S_13 and S_14, with measured values of 1.48 dB, 20.65 dB and 21.099 dB, respectively. The data rate is measured to be 1.34 Gbps as per the eye diagram characterization. The results show that the NEXT and FEXT are reduced by approximately 20 dB in the frequency range of 1–11 GHz for mixed signals. The substantial measured results in the vector network analyser coincide with the computer simulation technology microwave studio suite simulation results.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 15 February 2022

Tao Lin, Yaning Li, Rongjin Zhao, Zekun Ma and Jianan Xie

This paper aims to improve the device performance from the perspective of reducing ohmic contact resistance; the effects of different electrode structures and alloying parameters…

Abstract

Purpose

This paper aims to improve the device performance from the perspective of reducing ohmic contact resistance; the effects of different electrode structures and alloying parameters on the series resistance and power-current-voltage of laser diodes (LDs) have been investigated in this paper.

Design/methodology/approach

Four groups of p-GaAs side metal electrodes with different metal layer arrangements and thicknesses are fabricated for the investigated LDs. The investigated p-GaAs side electrodes are based on Ti/Pt/Au material and the n-GaAs side metal electrodes all have a same structure of Ni/Ge/Ni/Au/Ti/Pt/Au. The LDs with different electrodes were alloyed at 380°C for 60 s and 420°C for 80 s.

Findings

The experimental results show that the series resistance decreases by 14%–20%, the output power increases by 2%–2.2% and the conversion efficiency increases by 1.69%–2.16% for the LDs prepared with optimized alloying parameters (420°C for 80 s). The laser diode with p-GaAs side Ti/Pt/Au electrode of 30/70/100 nm has the best device characteristics under both annealing conditions.

Originality/value

The utilization of this improvement on ohmic contact property in electrode is not only very important for upgrading high-power LDs but also helpful for GaAs-based microelectronic devices such as HBT and monolithic microwave integrated circuit.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 April 2024

Guanglu Yang, Si Chen, Jianwei Qiao, Yubao Liu, Fuwen Tian and Cunxiang Yang

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet…

Abstract

Purpose

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet synchronous motor (HVLSPMSMS).

Design/methodology/approach

In this paper, the ampere–conductor wave model of HVLSPMSM after ITSF is established. Second, a mathematical model of the magnetic field after ITSF is established, and the influence law of the ITSF on the air-gap magnetic field is analyzed. Further, the mathematical expression of the electromagnetic force density is established based on the Maxwell tensor method. The impact of HVLSPMSM torque ripple frequency, radial electromagnetic force spatial–temporal distribution and rotor unbalanced magnetic tension force by ITSF is revealed. Finally, the electromagnetic–mechanical coupling model of HVLSPMSM is established, and the vibration spectra of the motor with different degrees of ITSF are solved by numerical calculation.

Findings

In this study, it is found that the 2np order flux density harmonics and (2 N + 1) p order electromagnetic forces are not generated when ITSF occurs in HVLSPMSM.

Originality/value

By analyzing the multi-harmonics of HVLSPMSM after ITSF, this paper provides a reliable method for troubleshooting from the perspective of vibration and torque fluctuation and rotor unbalanced electromagnetic force.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 March 2022

Dania Batool, Qandeel Malik, Tila Muhammad, Adnan Umar Khan and Jonghoon Kim

Multilevel inverters play a major role in the development of high-power industrial applications. In traditional low-level inverters (e.g. 2-level), the switching frequency is…

Abstract

Purpose

Multilevel inverters play a major role in the development of high-power industrial applications. In traditional low-level inverters (e.g. 2-level), the switching frequency is restricted and the harmonic spectrum of the system is hard to meet power requirements. Similarly, high-level inverters consist of a large number of switches, complex modulation techniques and complex hardware architecture, which results in high power loss and a significant amount of harmonic distortion. Furthermore, it is a must to ensure that every switch experiences the same stress of voltage and current. The purpose of this paper is to present an inverter topology with lower conduction and switching losses via reduced number of switches and equal voltage source-sharing technique.

Design/methodology/approach

Herein, the authors present a cascaded multilevel inverter having less power switches, a simple modulation technique and an equal voltage source-sharing phenomenon implementation.

Findings

The modulation technique becomes more complex when equal voltage source-sharing is to be implemented. In this study, a novel topology for the multilevel inverter with fewer switches, novel modulation technique, equal voltage source-sharing and Inductor-Capacitor-Inductor filter implementation is demonstrated to the reduce harmonic spectrum and power losses of the proposed system.

Originality/value

The nine-level inverter design is validated using software simulations and hardware prototype testing; the power losses of the proposed inverter design are elaborated and compared with the traditional approach.

Article
Publication date: 10 February 2023

Kanungo Barada Mohanty and Pavankumar Daramukkala

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level…

Abstract

Purpose

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level neutral point clamped converter placed at the front end, while a passive power filter is connected in shunt with it. The improvement in power quality can be achieved by reducing the total harmonic distortion in source current. The controllers were designed for the linearization of the high-power induction motor drive. A control method is presented for the regulation of the common DC-link voltage.

Design/methodology/approach

The induction motor is modeled using its dynamic equations, and a decoupling controller is designed to linearize the nonlinear dynamics of the drive through feedback. The common DC-link voltage of the proposed front-end connected converter is monitored and controlled through a control method which feeds the pulse width modulated inverter that drives the induction motor. A passive power filter is designed to meet the reactive power requirement of the system in addition to improve the power quality.

Findings

Simulations were carried out for the proposed topology of the drive mechanism, and the outcomes were analyzed by a comparative analysis of the drive system both in the presence of the passive filter as well as in the absence of the filter. The total harmonic distortion is found to be reduced enough to meet the standards with the designed filter, and the reactive power is also compensated considerably. The input power factor at the supply side is maintained almost to unity, and the DC-link voltage of the proposed circuit topology is maintained at the desired level. The overall performance of the drive system was found to be useful and economical.

Originality/value

A new topology of a front-end connected three-level neutral point clamped converter to a high power-rated induction motor drive is proposed. The drive is fed by a pulse width modulated inverter with a common DC-link with the front end connected converter. A passive filter is designed with respect to the reactive power requirement of the system and connected in shunt to the converter at the supply side. Control schemes are designed and used for the drive system and also for the regulation of the common DC-link voltage of the proposed front end connected converter.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 19