Search results

1 – 10 of over 43000
Article
Publication date: 1 August 2016

Bin Liu

The purpose of this paper is to propose a guaranteed cost control design procedure for model-based cyber–physical assembly (CPA) systems. To reflect the cyber–physical…

Abstract

Purpose

The purpose of this paper is to propose a guaranteed cost control design procedure for model-based cyber–physical assembly (CPA) systems. To reflect the cyber–physical environment, the network-induced delays and disturbances are introduced in the mathematical model.

Design/methodology/approach

Based on the linear matrix inequality approach, the guaranteed cost controller is designed such that the guaranteed cost can be satisfied and the corresponding convex optimization algorithm is provided. Moreover, H-infinity theory is used to deal with the disturbance with the given H-infinity attenuation level.

Findings

By constructing appropriate Lyapunov–Krasovskii functionals, delay-dependent sufficient conditions are established in terms of linear matrix inequalities and the controller design procedure is given.

Originality/value

A simplified CPA model is given based on which the designed controller can allow us to control the closed-loop CPA systems with the guaranteed cost.

Details

Assembly Automation, vol. 36 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 January 2018

Baolin Wu and Xibin Cao

This paper aims to address the problem of formation control for spacecraft formation in elliptic orbits by using local relative measurements.

Abstract

Purpose

This paper aims to address the problem of formation control for spacecraft formation in elliptic orbits by using local relative measurements.

Design/methodology/approach

A decentralized formation control law is proposed to solve the aforementioned problem. The control law for each spacecraft uses only its relative state with respect to the neighboring spacecraft it can sense. These relative states can be acquired by local relative measurements. The formation control problem is converted to n stabilization problems of a single spacecraft by using algebraic graph theories. The resulting relative motion model is described by a linear time-varying system with uncertain parameters. An optimal guaranteed cost control scheme is subsequently used to obtain the desired control performance.

Findings

Numerical simulations show the effectiveness of the proposed formation control law.

Practical implications

The proposed control law can be considered as an alternative to global positioning system-based relative navigation and control system for formation flying missions.

Originality/value

The proposed decentralized formation control architecture needs only local relative measurements. Fuel consumption is considered by using an optimal guaranteed cost control scheme.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 May 2020

Ezzeddine Touti, Ali Sghaier Tlili and Muhannad Almutiry

This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions…

Abstract

Purpose

This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions that are assumed to be uncertain but quadratically bounded.

Design/methodology/approach

Sufficient conditions, under which the designed control scheme can achieve the asymptotic stabilization of the augmented system, are developed within the Lyapunov theory in the framework of linear matrix inequalities (LMIs).

Findings

The derived LMIs are formulated under the form of an optimization problem whose resolution allows the concurrent computation of the decentralized control and observation gains and the maximization of the nonlinearity coverage tolerated by the system without becoming unstable. The reliable performances of the designed control scheme, compared to a distinguished decentralized guaranteed cost control strategy issued from the literature, are demonstrated by numerical simulations on an extensive application of a three-generator infinite bus power system.

Originality/value

The developed optimization problem subject to LMI constraints is efficiently solved by a one-step procedure to analyze the asymptotic stability and to synthesize all the control and observation parameters. Therefore, such a procedure enables to cope with the conservatism and suboptimal solutions procreated by optimization problems based on iterative algorithms with multi-step procedures usually used in the problem of dynamic output feedback decentralized control of nonlinear interconnected systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 March 2008

Chen Wei, Xin Chang and Bingqian Wang

The purpose of this paper is to present a robust control design method for uncertain multi‐time‐delay linear system.

Abstract

Purpose

The purpose of this paper is to present a robust control design method for uncertain multi‐time‐delay linear system.

Design/methodology/approach

Delay‐dependent stability conditions are given based on time‐dependent Lyapunov‐Krasovskii functional. By using the key technical lemma (Lemma 1) and the Schur Complement Lemma, the robust control design problem is transferred to the problem of solving several linear matrix inequalities, which can be easily realized by MATLAB Toolbox.

Findings

Delay‐dependent stability analysis and control design are less conservative than delay‐independent one, theoretically.

Originality/value

Both state delay and input delay are studied in this paper. Moreover, the uncertainties considered include not only parameter uncertainties, but also noise disturbance.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 June 2023

Haylim Chha and Yongbo Peng

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in…

3073

Abstract

Purpose

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in this case cannot guarantee cost-effective control effort and efficient structural response alleviation. To this end, this paper proposes a novel adaptive linear quadratic regulator (LQR) by integrating wavelet transform and genetic algorithm (GA).

Design/methodology/approach

In each time interval, multiresolution analysis of real-time structural responses returns filtered time signals dominated by different frequency bands. Minimization of cost function in each frequency band obtains control law and gain matrix that depend on temporal-frequency band, so suppressing resonance-induced filtered response signal can be directly achieved by regulating gain matrix in the temporal-frequency band, leading to emphasizing cost-function weights on control and state. To efficiently subdivide gain matrices in resonant and normal frequency bands, the cost-function weights are optimized by a developed procedure associated to genetic algorithm. Single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) structures subjected to near- and far-fault ground motions are studied.

Findings

Resonant band requires a larger control force than non-resonant band to decay resonance-induced peak responses. The time-varying cost-function weights generate control force more cost-effective than time-invariant ones. The scheme outperforms existing control algorithms and attains the trade-off between response suppression and control force under non-stationary excitations.

Originality/value

Proposed control law allocates control force amounts depending upon resonant or non-resonant band in each time interval. Cost-function weights and wavelet decomposition level are formulated in an elegant manner. Genetic algorithm-based optimization cost-efficiently results in minimizing structural responses.

Article
Publication date: 5 September 2016

S. Vahid Naghavi, A.A. Safavi, Mohammad Hassan Khooban, S. Pourdehi and Valiollah Ghaffari

The purpose of this paper is to concern the design of a robust model predictive controller for distributed networked systems with transmission delays.

Abstract

Purpose

The purpose of this paper is to concern the design of a robust model predictive controller for distributed networked systems with transmission delays.

Design/methodology/approach

The overall system is composed of a number of interconnected nonlinear subsystems with time-varying transmission delays. A distributed networked system with transmission delays is modeled as a nonlinear system with a time-varying delay. Time delays appear in distributed systems due to the information transmission in the communication network or transport of material between the sub-plants. In real applications, the states may not be available directly and it could be a challenge to address the control problem in interconnected systems using a centralized architecture because of the constraints on the computational capabilities and the communication bandwidth. The controller design is characterized as an optimization problem of a “worst-case” objective function over an infinite moving horizon.

Findings

The aim is to propose control synthesis approach that depends on nonlinearity and time varying delay characteristics. The MPC problem is represented in a time varying delayed state feedback structure. Then the synthesis sufficient condition is provided in the form of a linear matrix inequality (LMI) optimization and is solved online at each time instant. In the rest, an LMI-based decentralized observer-based robust model predictive control strategy is proposed.

Originality/value

The authors develop RMPC strategies for a class of distributed networked systems with transmission delays using LMI-Based technique. To evaluate the applicability of the developed approach, the control design of a networked chemical reactor plant with two sub-plants is studied. The simulation results show the effectiveness of the proposed method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 April 2016

Baoye Song, Zidong Wang and Li Sheng

The purpose of this paper is to consider the smooth path planning problem for a mobile robot based on the genetic algorithm (GA) and the Bezier curve.

Abstract

Purpose

The purpose of this paper is to consider the smooth path planning problem for a mobile robot based on the genetic algorithm (GA) and the Bezier curve.

Design/methodology/approach

The workspace of a mobile robot is described by a new grid-based representation that facilitates the operations of the adopted GA. The chromosome of the GA is composed of a sequence of binary numbered grids (i.e. control points of the Bezier curve). Ordinary genetic operators including crossover and mutation are used to search the optimum chromosome where the optimization criterion is the length of a piecewise collision-free Bezier curve path determined by the control points.

Findings

This paper has proposed a new smooth path planning for a mobile robot by resorting to the GA and the Bezier curve. A new grid-based representation of the workspace has been presented, which makes it convenient to perform operations in the GA. The GA has been used to search the optimum control points that determine the Bezier curve-based smooth path. The effectiveness of the proposed approach has been verified by a numerical experiment, and some performances of the obtained method have also been analyzed.

Research limitations/implications

There still remain many interesting topics, for example, how to solve the specific smooth path planning problem by using the GA and how to promote the computational efficiency in the more grids case. These issues deserve further research.

Originality/value

The purpose of this paper is to improve the existing results by making the following three distinctive contributions: a rigorous mathematical formulation of the path planning optimization problem is formulated; a general grid-based representation (2n × 2n) is proposed to describe the workspace of the mobile robots to facilitate the implementation of the GA where n is chosen according to the trade-off between the accuracy and the computational burden; and the control points of the Bezier curve are directly linked to the optimization criteria so that the generated paths are guaranteed to be optimal without any need for smoothing afterwards.

Details

Assembly Automation, vol. 36 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 April 2009

Qu Shao‐cheng, Gong mei‐jing and Wang yong‐ji

The purpose of this paper is to find an appropriate sliding mode control strategy for neutral systems with time‐delays in the presence of unmatched parameter uncertainties and…

236

Abstract

Purpose

The purpose of this paper is to find an appropriate sliding mode control strategy for neutral systems with time‐delays in the presence of unmatched parameter uncertainties and external disturbance.

Design/methodology/approach

Owing to the complexity of uncertain neutral time‐delay systems, some conclusions for system stability and stabilization are complicated non‐linear matrix inequality (NLMI). Through virtual state feedback control, a sliding mode controller is designed to guarantee state trajectories from any initial condition are attracted to the sliding mode plane in a finite time and remain there for all subsequent time, which can avoid the complicated NLMI. Furthermore, a delay‐independent sufficient condition for the design of robust stable sliding mode plane is obtained in term of LMI.

Findings

The sliding mode controller for uncertain neutral time‐delay systems is designed and a delay‐independent sufficient condition for the design of robust stable sliding mode plane is obtained.

Research limitations/implications

The main limitations are that external disturbance must meet matched condition.

Practical implications

A useful control strategy for uncertain neutral systems with time‐delays.

Originality/value

The virtual state feedback control is designed so to avoid the complicated NLMI.

Details

Kybernetes, vol. 38 no. 3/4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 February 2024

Quanwei Yin, Liang Zhang and Xudong Zhao

This paper aims to study the issues of output reachable set estimation for the linear singular Markovian jump systems (SMJSs) with time-varying delay based on a proportional plus…

Abstract

Purpose

This paper aims to study the issues of output reachable set estimation for the linear singular Markovian jump systems (SMJSs) with time-varying delay based on a proportional plus derivative (PD) bumpless transfer (BT) output feedback (OF) control scheme.

Design/methodology/approach

To begin with, a sufficient criterion is given in the form of a linear matrix inequality based on the Lyapunov stability theory. Then, a PD-BT OF controller is designed to keep all the output signs of the system are maintain within a predetermined ellipsoid. Finally, numerical and practical examples are used to demonstrate the efficiency of the approach.

Findings

Based on PD control and BT control method, an OF control strategy for the linear SMJSs with time-varying delay is proposed.

Originality/value

The output reachable set synthesis of linear SMJSs with time-varying delay can be solved by using the proposed approach. Besides, to obtain more general results, the restrictive assumptions of some parameters are removed. Furthermore, a sufficiently small ellipsoid can be obtained by the design scheme adopted in this paper, which reduces the conservatism of the existing results.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 2 March 2012

Muhammad Umer Khan, Ibrar Jan and Naeem Iqbal

The purpose of this paper is to present the methodology to the robust stability analysis of a vision‐based control loop in an uncalibrated environment. The type of uncertainties…

Abstract

Purpose

The purpose of this paper is to present the methodology to the robust stability analysis of a vision‐based control loop in an uncalibrated environment. The type of uncertainties considered is the parametric uncertainties. The approach adopted in this paper utilizes quadratic Lyapunov function to determine the composite Jacobian matrix and ensures the robust stability using linear matrix inequality (LMI) optimization. The effectiveness of the proposed approach can be witnessed by applying it to two‐link robotic manipulator with the camera mounted on the end‐effector.

Design/methodology/approach

The objective of this research is the analysis of uncertain nonlinear system by representing it in differential‐algebraic form. By invoking the suitable system representation and Lyapunov analysis, the stability conditions are described in terms of linear matrix inequalities.

Findings

The proposed method is proved robust in the presence of parametric uncertainties.

Originality/value

Through a differential‐algebraic equation, LMI conditions are devised that ensure the stability of the uncertain system while providing an estimate of the domain of attraction based upon quadratic Lyapunov function.

Details

Industrial Robot: An International Journal, vol. 39 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 43000