Search results

1 – 10 of 497
Article
Publication date: 1 August 2016

Bin Liu

The purpose of this paper is to propose a guaranteed cost control design procedure for model-based cyber–physical assembly (CPA) systems. To reflect the cyber–physical

Abstract

Purpose

The purpose of this paper is to propose a guaranteed cost control design procedure for model-based cyber–physical assembly (CPA) systems. To reflect the cyber–physical environment, the network-induced delays and disturbances are introduced in the mathematical model.

Design/methodology/approach

Based on the linear matrix inequality approach, the guaranteed cost controller is designed such that the guaranteed cost can be satisfied and the corresponding convex optimization algorithm is provided. Moreover, H-infinity theory is used to deal with the disturbance with the given H-infinity attenuation level.

Findings

By constructing appropriate Lyapunov–Krasovskii functionals, delay-dependent sufficient conditions are established in terms of linear matrix inequalities and the controller design procedure is given.

Originality/value

A simplified CPA model is given based on which the designed controller can allow us to control the closed-loop CPA systems with the guaranteed cost.

Details

Assembly Automation, vol. 36 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 26 July 2021

Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…

12020

Abstract

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 15 July 2019

Yong Li, Yanjun Huang and Xing Xu

Sensorless interior permanent magnet in-wheel motor (IPMIWM), as an exemplar of modular automation system, has attracted considerable interests in recent years. This paper aims to…

139

Abstract

Purpose

Sensorless interior permanent magnet in-wheel motor (IPMIWM), as an exemplar of modular automation system, has attracted considerable interests in recent years. This paper aims to investigate a novel hybrid control approach for the sensorless IPMIWM from a cyber-physical systems (CPS) perspective.

Design/methodology/approach

The control approach is presented based on the hybrid dynamical theory. In the standstill-low (S-L) speed, the rotor position/speed signal is estimated by the method of the high frequency (HF) voltage signal injection. The least square support vector machine (LS-SVM) is used to acquire the rotor position/speed signal in medium-high (M-H) speed operation. Hybrid automata model of the IPMIWM is established due to its hybrid dynamic characteristics in wide speed range. A hybrid state observer (HSO), including a discrete state observer (DSO) and a continuous state observer (CSO), is designed for rotor position/speed estimation of the IPMIWM.

Findings

The hardware-in-the-loop testing based on dSPACE is carried out on the test bench. Experimental investigations demonstrate the hybrid control approach can not only identify the rotor position/speed signal with a certain load but also be able to reject the load disturbance. The reliability and the effectiveness of the proposed hybrid control approach were verified.

Originality/value

The proposed hybrid control approach for the sensorless IPMIWM promotes the deep combination and coordination of sensorless IPMIWM drive system. It also theoretically supports and extends the development of the hybrid control of the highly integrated modular automation system.

Article
Publication date: 16 April 2020

Berna Unver, Özgür Kabak, Y. Ilker Topcu, Armagan Altinisik and Ozcan Cavusoglu

In the automotive industry, the high process complexity becomes an important issue because of the increased number of product and process variants demanded by the customers. To…

Abstract

Purpose

In the automotive industry, the high process complexity becomes an important issue because of the increased number of product and process variants demanded by the customers. To avoid quality defects in assembly and losses in such a complex manufacturing environment, new predictive support systems are required. This study aims to develop a multiple attribute decision support system (DSS) for the prediction and quantification of the risk of failures on the workstations of a leading Turkish automotive manufacturing company.

Design/methodology/approach

Initially, the factors affecting the failures in workstations and the attributes to evaluate the factors are identified. Subsequently, the relations among the attributes are specified and priorities of them are calculated. Finally, the risk of failures is calculated and tested in a pilot study and validated with real production data.

Findings

To the best of authors’ knowledge, this is a unique study that computes the risk scores on the workstations via DSS. The DSS has various advantages for improvements of the manufacturing quality: the risk of failures can be detectable and comparable, the effect of changes in the design of new workstations can be observed. Stations that have medium or high complexity scores demonstrated strong correlation with failure rates. A sensitivity analysis is conducted to predict the effect of improvement actions on the riskiness of the workstations.

Originality/value

High level of production complexity becomes a crucial issue for companies that use various production processes. Considering this fact, it is a requirement for companies to observe and monitor the risk factors, especially in the assembly lines to be able to eliminate failures derived from complexity. Accordingly, to measure risk scores of the workstations in the assembly lines, a decision support for companies aids executives to manage the complexity level in a reliable and effective way. In this study, the authors develop such a DSS for TOFAS, a leading Turkish automotive company. The proposed DSS is verified and applied through a pilot study on a specific basic production unit. A sensitivity analysis is also conducted to see the effects of potential improvements on the risk scores. Additionally, the trend of risk scores for the stations can also give valuable information for tracing the changes in the time horizon. The proposed DSS also enables an opportunity for the executives in their decision of design processes of new production lines by allocating limited resources in an appropriate way based on the risk scores of possible workstations. The proposed DSS is the first and unique proactive failure prevention model developed in a Fiat Chrysler Automobiles (FCA) plant across the world. TOFAS executives also plan to introduce and enlarge the usage of the model to other FCA plants. It may also be possible to apply the model to other assembly lines in any sector. Another plan of the executives of TOFAS is developing a software, which manages each parameter, to constitute data to the DSS to run this system more instantly and effectively. Moreover, they can take integration actions of the software with world-class manufacturing problem management system that is currently in use in TOFAS.

Details

Journal of Enterprise Information Management, vol. 33 no. 5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 29 January 2019

Michael Sony and Subhash Naik

Industry 4.0 is the present trend in automation and data exchange in organizations. However, till today, there is no generic and common understanding in terms of assessing the…

8704

Abstract

Purpose

Industry 4.0 is the present trend in automation and data exchange in organizations. However, till today, there is no generic and common understanding in terms of assessing the Industry 4.0 readiness for organizations. The purpose of this paper is to identify the key ingredients for assessing Industry 4.0 readiness for organizations, the interrelationships that exist between these readiness factors and how future research should proceed given the research findings.

Design/methodology/approach

A systematic literature review (SLR) methodology of Tranfield et al. (2003) was employed to ensure the replicability and transparency of the review process. Altogether, 68 articles were identified for the final thematic analysis.

Findings

The SLR results generated six broad themes of readiness factors. The interrelationship mechanism between these factors was identified. In addition, 17 research propositions were elucidated.

Research limitations/implications

Being the first literature review on assessing Industry 4.0 readiness for organizations, it finds 17 research propositions which will give the future researchers a guideline for further research in Industry 4.0.

Practical implications

Although Industry 4.0 is the buzzword, very few organizations understand the concept in detail. This paper will help the organizations to identify the factors which they have to asses critically before implementing Industry 4.0 in an organization.

Originality/value

Nevertheless, there has been a lot of research on Industry 4.0; this is the first systematic literature to identify the key ingredients for assessing Industry 4.0 readiness for organizations.

Details

Benchmarking: An International Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 5 August 2022

Bayi Cheng, Xinyan Shi, Junwei Gao and Huijun Zhu

The purpose of this paper is to study the profit optimization of manufacturers who provide personalized products to customers, thus avoiding additional operational costs and…

Abstract

Purpose

The purpose of this paper is to study the profit optimization of manufacturers who provide personalized products to customers, thus avoiding additional operational costs and response times in the production process of personalized product design.

Design/methodology/approach

First, the authors present an integrated model for optimizing profit where the design and production of personalized products are both considered. The authors propose the concept of personalization level and four cases of personalization level are considered including top, high, medium and low levels. Polynomial-time optimal rules are provided for each level by analyzing 17 subcases where all possible personalized products are considered. Then, the authors compare the obtained profit of personalized products with the optimal profit of standardized products.

Findings

At low and high levels of personalization, personalized manufacturing is more profitable for specific products with specific characteristics. At the top and middle level of individuation, assuming that the product has certain characteristics, whether the best choice to produce personalized products depends on the level of individuation chosen by customers.

Originality/value

An important decision issue for manufacturers is whether to produce personalized or standardized products. In this study, the authors consider this decision problem and analyze the operational functions of personalized products. The authors hope to provide theoretical support in the operational management of manufacturers offering personalized products.

Details

Journal of Modelling in Management, vol. 18 no. 6
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 10 October 2022

Teng Wang, Xiaofeng Hu and Yahui Zhang

Steam turbine final assembly is a dynamic process, in which various interference events occur frequently. Currently, data transmission relies on oral presentation, while…

Abstract

Purpose

Steam turbine final assembly is a dynamic process, in which various interference events occur frequently. Currently, data transmission relies on oral presentation, while scheduling depends on the manual experience of managers. This mode has low information transmission efficiency and is difficult to timely respond to emergencies. Besides, it is difficult to consider various factors when manually adjusting the plan, which reduces assembly efficiency. The purpose of this paper is to propose a knowledge-based real-time scheduling system under cyber-physical system (CPS) environment which can improve the assembly efficiency of steam turbines.

Design/methodology/approach

First, an Internet of Things based CPS framework is proposed to achieve real-time monitoring of turbine assembly and improve the efficiency of information transmission. Second, a knowledge-based real-time scheduling system consisting of three modules is designed to replace manual experience for steam turbine assembly scheduling.

Findings

Experiments show that the scheduling results of the knowledge-based scheduling system outperform heuristic algorithms based on priority rules. Compared with manual scheduling, the delay time is reduced by 43.9%.

Originality/value

A knowledge-based real-time scheduling system under CPS environment is proposed to improve the assembly efficiency of steam turbines. This paper provides a reference paradigm for the application of the knowledge-based system and CPS in the assembly control of labor-intensive engineering-to-order products.

Details

Assembly Automation, vol. 42 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 February 2018

Mengru Tu, Ming K. Lim and Ming-Fang Yang

The purpose of this paper is threefold: to present internet of things (IoT)-based cyber-physical system (CPS) architecture framework to facilitate the integration of IoT and CPS;…

3499

Abstract

Purpose

The purpose of this paper is threefold: to present internet of things (IoT)-based cyber-physical system (CPS) architecture framework to facilitate the integration of IoT and CPS; to implement an IoT-based CPS prototype based on the architecture framework for a PL application scenario of in a case study; and to devise evaluation methods and conduct experimental evaluations on an IoT-based CPS prototype.

Design/methodology/approach

The design research method, case study, emulation experiment method, and cost-benefit analysis are applied in this research. An IoT-based CPS architecture framework is proposed, and followed by the development of prototype system and testbed platform. Then, the emulation and experimental evaluation of IoT-based CPS are conducted on the testbed, and the experimental results are analyzed.

Findings

The emulation experiment results show that the proposed IoT-based CPS outperforms current barcode-based system regarding labor cost, efficiency, and operational adaptiveness. The evaluation of the IoT-based CPS prototype indicates significant improvements in PL tasks and reduced part inventory under a dynamic changing shop-floor environment.

Practical implications

The case study shows that the proposed architecture framework and prototype system can be applied to many discrete manufacturing industries, such as automobile, airplane, bicycle, home appliance, and electronics.

Originality/value

The proposed IoT-based CPS is among the first to address the need to integrate IoT and CPS for PL applications, and to conduct experimental evaluations and cost-benefit analysis of adopting IoT-based CPS for PL. This paper also contributes to the IoT research by using diverse research methods to offer broader insights into understanding IoT and CPS.

Details

Industrial Management & Data Systems, vol. 118 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 28 September 2023

Mariam Moufaddal, Asmaa Benghabrit and Imane Bouhaddou

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”…

Abstract

Purpose

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations.

Design/methodology/approach

The proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly.

Findings

The analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods.

Originality/value

This study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 23 August 2023

Mohamed Madani Hafidi, Meriem Djezzar, Mounir Hemam, Fatima Zahra Amara and Moufida Maimour

This paper aims to offer a comprehensive examination of the various solutions currently accessible for addressing the challenge of semantic interoperability in cyber physical

Abstract

Purpose

This paper aims to offer a comprehensive examination of the various solutions currently accessible for addressing the challenge of semantic interoperability in cyber physical systems (CPS). CPS is a new generation of systems composed of physical assets with computation capabilities, connected with software systems in a network, exchanging data collected from the physical asset, models (physics-based, data-driven, . . .) and services (reconfiguration, monitoring, . . .). The physical asset and its software system are connected, and they exchange data to be interpreted in a certain context. The heterogeneous nature of the collected data together with different types of models rise interoperability problems. Modeling the digital space of the CPS and integrating information models that support cyber physical interoperability together are required.

Design/methodology/approach

This paper aims to identify the most relevant points in the development of semantic models and machine learning solutions to the interoperability problem, and how these solutions are implemented in CPS. The research analyzes recent papers related to the topic of semantic interoperability in Industry 4.0 (I4.0) systems.

Findings

Semantic models are key enabler technologies that provide a common understanding of data, and they can be used to solve interoperability problems in Industry by using a common vocabulary when defining these models.

Originality/value

This paper provides an overview of the different available solutions to the semantic interoperability problem in CPS.

Details

International Journal of Web Information Systems, vol. 19 no. 3/4
Type: Research Article
ISSN: 1744-0084

Keywords

1 – 10 of 497