Search results

1 – 6 of 6
Open Access
Article
Publication date: 3 May 2021

Lakehal Belarbi and Hichem Elhendi

Let (M, g) be a n-dimensional smooth Riemannian manifold. In the present paper, the authors introduce a new class of natural metrics denoted by gf and called gradient Sasaki…

2632

Abstract

Purpose

Let (M, g) be a n-dimensional smooth Riemannian manifold. In the present paper, the authors introduce a new class of natural metrics denoted by gf and called gradient Sasaki metric on the tangent bundle TM. The authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM, gf) and several important results are obtained on curvature, scalar and sectional curvatures.

Design/methodology/approach

In this paper the authors introduce a new class of natural metrics called gradient Sasaki metric on tangent bundle.

Findings

The authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM,gf) and several important results are obtained on curvature scalar and sectional curvatures.

Originality/value

The authors calculate its Levi-Civita connection and Riemannian curvature tensor. The authors study the geometry of (TM,gf) and several important results are obtained on curvature scalar and sectional curvatures.

Details

Arab Journal of Mathematical Sciences, vol. 29 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 1 August 1939

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory Committee for Aeronautics and publications of other similar research bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 2 July 2021

Kheir M. Al-Kodmany

This paper reviews, summarizes and pieces together scattered information on the newly completed Chicago Riverwalk in Chicago, Illinois. It explains the design process that…

Abstract

Purpose

This paper reviews, summarizes and pieces together scattered information on the newly completed Chicago Riverwalk in Chicago, Illinois. It explains the design process that transformed an outmoded infrastructure and disused river banks into an attractive gathering civic space, a linear urban park and a functional transportation corridor.

Design/methodology/approach

Literature review.

Findings

Overall, the paper reports on one of the latest projects in Chicago that symbolizes the city's long history and earnest commitment to urban sustainability.

Research limitations/implications

The paper identifies key urban sustainability lessons that are transferable to other cities.

Originality/value

It is the first paper that stitches together scattered information on the topic.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. 15 no. 3
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 1 July 2021

Wonil Lee, Ken-Yu Lin, Peter W. Johnson and Edmund Y.W. Seto

The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing…

Abstract

Purpose

The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors.

Design/methodology/approach

Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods.

Findings

The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management.

Research limitations/implications

This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group.

Originality/value

This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 June 2021

Witold Artur Klimczyk

This paper aims to present a methodology of designing a custom propeller for specified needs. The example of propeller design for large unmanned air vehicle (UAV) is considered.

Abstract

Purpose

This paper aims to present a methodology of designing a custom propeller for specified needs. The example of propeller design for large unmanned air vehicle (UAV) is considered.

Design/methodology/approach

Starting from low fidelity Blade Element (BE) methods, the design is obtained using evolutionary algorithm-driven process. Realistic constraints are used, including minimum thickness required for stiffness, as well as manufacturing ones – including leading and trailing edge limits. Hence, the interactions between propellers in hex-rotor configuration, and their influence on structural integrity of the UAV are investigated. Unsteady Reynolds-Averaged Navier–Stokes (URANS) are used to obtain loading on the propeller blades in hover. Optimization of the propeller by designing a problem-specific airfoil using surrogate modeling-driven optimization process is performed.

Findings

The methodology described in the current paper proved to deliver an efficient blade. The optimization approach allowed to further improve the blade efficiency, with power consumption at hover reduced by around 7%.

Practical implications

The methodology can be generalized to any blade design problem. Depending on the requirements and constraints the result will be different.

Originality/value

Current work deals with the relatively new class of design problems, where very specific requirements are put on the propellers. Depending on these requirements, the optimum blade geometry may vary significantly.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 September 2019

Leiyu Zhang, Jianfeng Li, Shuting Ji, Peng Su, Chunjing Tao and Run Ji

Upper-limb joint kinematics are highly complex and the kinematics of rehabilitation exoskeletons fail to reproduce them, resulting in hyperstaticity and human–machine…

Abstract

Purpose

Upper-limb joint kinematics are highly complex and the kinematics of rehabilitation exoskeletons fail to reproduce them, resulting in hyperstaticity and human–machine incompatibility. The purpose of this paper is to design and develop a compatible exoskeleton robot (Co-Exos II) to address these problems.

Design/methodology/approach

The configuration synthesis of Co-Exos II is completed using advanced mechanism theory. A compatible configuration is selected and four passive joints are introduced into the connecting interfaces based on optimal configuration principles. A Co-Exos II prototype with nine degrees of freedom (DOFs) is developed and still owns a compact structure and volume. A new approach is presented to compensate the vertical glenohumeral (GH) movements. Co-Exos II and the upper arm are simplified as a guide-bar mechanism at the elevating plane. The theoretical displacements of passive joints are calculated by the kinematic model of the shoulder loop. The compatible experiments are completed to measure the kinematics of passive joints.

Findings

The compatible configuration of the passive joints can effectively reduce the gravity influences of the exoskeleton device and the upper extremities. The passive joints exhibit excellent compensation effect for the GH joint movements by comparing the theoretical and measured results. Passive joints can compensate for most GH movements, especially vertical movements.

Originality/value

Co-Exos II possesses good human–machine compatibility and wearable comfort for the affected upper limbs. The proposed compensation method is convenient to therapists and stroke patients during the rehabilitation trainings.

Access

Year

Content type

Article (6)
1 – 6 of 6