Search results

1 – 10 of 984
To view the access options for this content please click here
Article
Publication date: 10 June 2021

Witold Artur Klimczyk

This paper aims to present a methodology of designing a custom propeller for specified needs. The example of propeller design for large unmanned air vehicle (UAV) is considered.

Abstract

Purpose

This paper aims to present a methodology of designing a custom propeller for specified needs. The example of propeller design for large unmanned air vehicle (UAV) is considered.

Design/methodology/approach

Starting from low fidelity Blade Element (BE) methods, the design is obtained using evolutionary algorithm-driven process. Realistic constraints are used, including minimum thickness required for stiffness, as well as manufacturing ones – including leading and trailing edge limits. Hence, the interactions between propellers in hex-rotor configuration, and their influence on structural integrity of the UAV are investigated. Unsteady Reynolds-Averaged Navier–Stokes (URANS) are used to obtain loading on the propeller blades in hover. Optimization of the propeller by designing a problem-specific airfoil using surrogate modeling-driven optimization process is performed.

Findings

The methodology described in the current paper proved to deliver an efficient blade. The optimization approach allowed to further improve the blade efficiency, with power consumption at hover reduced by around 7%.

Practical implications

The methodology can be generalized to any blade design problem. Depending on the requirements and constraints the result will be different.

Originality/value

Current work deals with the relatively new class of design problems, where very specific requirements are put on the propellers. Depending on these requirements, the optimum blade geometry may vary significantly.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 24 June 2021

Aleksandar Kovačević, Jelena Svorcan, Mohammad Sakib Hasan, Toni Ivanov and Miroslav Jovanović

Modern unmanned air vehicles (UAVs) are usually equipped with rotors connected to electric motors that enable them to hover and fly in all directions. The purpose of the…

Abstract

Purpose

Modern unmanned air vehicles (UAVs) are usually equipped with rotors connected to electric motors that enable them to hover and fly in all directions. The purpose of the paper is to design optimal composite rotor blades for such small UAVs and investigate their aerodynamic performances both computationally and experimentally.

Design/methodology/approach

Artificial intelligence method (genetic algorithm) is used to optimize the blade airfoil described by six input parameters. Furthermore, different computational methods, e.g. vortex methods and computational fluid dynamics, blade element momentum theory and finite element method, are used to predict the aerodynamic performances of the optimized airfoil and complete rotor as well the structural behaviour of the blade, respectively. Finally, composite blade is manufactured and the rotor performance is also determined experimentally by thrust and torque measurements.

Findings

Complete process of blade design (including geometry definition and optimization, estimation of aerodynamic performances, structural analysis and blade manufacturing) is conducted and explained in detail. The correspondence between computed and measured thrust and torque curves of the optimal rotor is satisfactory (differences mostly remain below 15%), which validates and justifies the used design approach formulated specifically for low-cost, small-scale propeller blades. Furthermore, the proposed techniques can easily be applied to any kind of rotating lifting surfaces including helicopter or wind turbine blades.

Originality/value

Blade design methodology is simplified, shortened and made more flexible thus enabling the fast and economic production of propeller blades optimized for specific working conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 2015

M.S. Abdul Aziz, M.Z. Abdullah, C.Y. Khor, M. Mazlan, A.M. Iqbal and Z.M. Fairuz

The purpose of this paper is to present a three-dimensional finite volume-based analysis on the effects of propeller blades on fountain flow in a wave soldering process…

Abstract

Purpose

The purpose of this paper is to present a three-dimensional finite volume-based analysis on the effects of propeller blades on fountain flow in a wave soldering process and performs an experimental validation.

Design/methodology/approach

Solder pot models with various numbers of propeller blades were developed and meshed by using hybrid elements and simulated by using the FLUENT fluid flow solver. The characteristics of the fountain, such as flow profile, velocity vector, filling time, and fountain advancement, were investigated. Molten solder (Sn63Pb37) material, a temperature of 250°C, and a propeller speed of 830 rpm were applied in the simulation. The predicted results were validated by the experimental fountain profile.

Findings

The use of a six-blade propeller in a solder pot increased the fountain thickness profile and reduced the filling time. Moreover, a six-blade propeller design resulted in a stable fountain profile and was considered the best choice for current wave soldering processes.

Practical implications

This study provides a better understanding of the effects of propeller blades on the fountain flow in the wave soldering process.

Originality/value

The study explores the fountain flow behavior and provides a reference to the engineers and designers in order to improve the fountain flow of the wave soldering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 1 November 1991

ONE of the most important issues facing regional turboprop airframe manufacturers today is reducing cabin noise. Range and cruise speed are also major considerations…

Abstract

ONE of the most important issues facing regional turboprop airframe manufacturers today is reducing cabin noise. Range and cruise speed are also major considerations. Propeller optimization, in terms of the propeller diameter, blade design, and the number of blades, is a key factor in all three issues. Many airframe manufacturers are finding the solution to their problems in composite propellers.

Details

Aircraft Engineering and Aerospace Technology, vol. 63 no. 11
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 30 January 2007

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 1
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 1 August 1974

Aeronautical & General Instruments Ltd, will exhibit their R 128 recording cameras, designed to photograph the information displayed on the cathode ray tube of an…

Abstract

Aeronautical & General Instruments Ltd, will exhibit their R 128 recording cameras, designed to photograph the information displayed on the cathode ray tube of an aircraft's reconnaissance radar.

Details

Aircraft Engineering and Aerospace Technology, vol. 46 no. 8
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 1 January 1959

The 54th meeting of the CRG was held at the College of Aeronautics, Cranfield, where the Aslib Research Project is testing the comparative efficiency of information…

Abstract

The 54th meeting of the CRG was held at the College of Aeronautics, Cranfield, where the Aslib Research Project is testing the comparative efficiency of information retrieval systems. One system on trial is a faceted classification for Aeronautics and allied subjects, drafted by B. C. Vickery and J. E. L. Farradane, and since revised with the aid of the Project workers, C. W. Cleverdon, J. Hadlow, T. Opatowski, and J. Sharp.

Details

Journal of Documentation, vol. 15 no. 1
Type: Research Article
ISSN: 0022-0418

Content available
Article
Publication date: 1 August 2001

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 1942

The present report describes a device for ascertaining the bending and buckling effect in stress measurements on shell structures accessible from one side only. Beginning…

Abstract

The present report describes a device for ascertaining the bending and buckling effect in stress measurements on shell structures accessible from one side only. Beginning with a discussion of the relationship between flexural strain and certain parameters, the respective errors of the test method for great or variable skin curvature within the test range are analyzed and illustrated by specimen examples.

Details

Aircraft Engineering and Aerospace Technology, vol. 14 no. 10
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 28 June 2013

Jacek Mieloszyk, Cezary Galiński and Janusz Piechna

This is the first of two companion papers presenting the results of research into a contra‐rotating propeller designed to drive a super manoeuvrable micro air vehicle…

Abstract

Purpose

This is the first of two companion papers presenting the results of research into a contra‐rotating propeller designed to drive a super manoeuvrable micro air vehicle (MAV). The purpose of this first paper is to describe the design process and numerical analyses. The second paper is devoted to the experimental results verifying the computations.

Design/methodology/approach

Software based on the analytical formulas derived by Theodore Theodorsen was used in the design procedure. Three‐dimensional finite‐volume simulation, performed with the use of commercial software verified the results. Finally, two‐dimensional simulation was conducted to explore the effect of the propeller‐wing interaction. The meshes applied in these analyses are described.

Findings

Propeller geometry received as a result of the design procedure is presented. The computation results for different turbulence models applied are discussed. Time dependent characteristics of contra‐rotating propeller are presented as well as conclusions regarding propeller‐wing interaction.

Research limitations/implications

Propeller was designed for a fixed wing aeroplane, not for helicopter rotor. Therefore, conditions characteristic for fixed wing aeroplane flight are analysed only. Reynolds numbers below 50000 are considered.

Practical implications

Designed contra‐rotating propeller can be used in fixed wing aeroplane if torque equal to zero is required. Software based on the formulas derived by T. Theodorsen can be used to design the propellers.

Originality/value

Software applied in the design procedure was originally developed by one of authors although it is based on the formulas derived by T. Theodorsen. Contra‐rotating propeller simulation results for different turbulence models are discussed for the first time. Moreover, unique time dependent characteristics of contra‐rotating propeller are presented.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 984