Search results

1 – 10 of 101
Article
Publication date: 11 March 2024

Hendrik Hensel and Markus Clemens

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air…

Abstract

Purpose

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air. However, under high voltage direct current conditions, charge accumulation and electric field stress may occur, which may lead to partial discharge or system failure. Therefore, numerical simulations are used to design the system and determine the electric field and charge distribution. Although the gas conduction shows a more complex current–voltage characteristic compared to solid insulation, the electric conductivity of the SF6 gas is set as constant in most works. The purpose of this study is to investigate different approaches to address the conduction in the gas properly for numerical simulations.

Design/methodology/approach

In this work, two approaches are investigated to address the conduction in the insulating gas and are compared to each other. One method is an ion-drift-diffusion model, where the conduction in the gas is described by the ion motion in the SF6 gas. However, this method is computationally expensive. Alternatively, a less complex approach is an electro-thermal model with the application of an electric conductivity model for the SF6 gas. Measurements show that the electric conductivity in the SF6 gas has a nonlinear dependency on temperature, electric field and gas pressure. From these measurements, an electric conductivity model was developed. Both methods are compared by simulation results, where different parameters and conditions are considered, to investigate the potential of the electric conductivity model as a computationally less expensive alternative.

Findings

The simulation results of both simulation approaches show similar results, proving the electric conductivity for the SF6 gas as a valid alternative. Using the electro-thermal model approach with the application of the electric conductivity model enables a solution time up to six times faster compared to the ion-drift-diffusion model. The application of the model allows to examine the influence of different parameters such as temperature and gas pressure on the electric field distribution in the GIL, whereas the ion-drift-diffusion model enables to investigate the distribution of homo- and heteropolar charges in the insulation gas.

Originality/value

This work presents numerical simulation models for high voltage direct current GIL, where the conduction in the SF6 gas is described more precisely compared to a definition of a constant electric conductivity value for the insulation gas. The electric conductivity model for the SF6 gas allows for consideration of the current–voltage characteristics of the gas, is computationally less expensive compared to an ion-drift diffusion model and needs considerably less solution time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 June 2023

Ashish Trivedi, Amit Tyagi, Ouissal Chichi, Sanjeev Kumar and Vibha Trivedi

This study aims to provide a scientific framework for the selection of suitable substation technology in an electrical power distribution network.

Abstract

Purpose

This study aims to provide a scientific framework for the selection of suitable substation technology in an electrical power distribution network.

Design/methodology/approach

The present paper focuses on adopting an integrated multi-criteria decision-making approach using the Delphi method, analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). The AHP is used to ascertain the criteria weights, and the TOPSIS is used for choosing the most fitting technology among choices of air-insulated substation, gas-insulated substation (GIS) and hybrid substation, to guarantee educated and supported choice.

Findings

The results reveal that the GIS is the most preferred technology by area experts, considering all the criteria and their relative preferences.

Practical implications

The current research has implications for public and private organizations responsible for the management of electricity in India, particularly the distribution system as the choice of substations is an essential component that has a strong impact on the smooth functioning and performance of the energy distribution in the country. The implementation of the chosen technology not only reduces economic losses but also contributes to the reduction of power outages, minimization of energy losses and improvement of the reliability, security, stability and quality of supply of the electrical networks.

Social implications

The study explores the impact of substation technology installation in terms of its economic and environmental challenges. It emphasizes the need for proper installation checks to avoid long-term environmental hazards. Further, it reports that the economic benefits should not come at the cost of ecological degradation.

Originality/value

The present study is the first to provide a decision support framework for the selection of substation technologies using the hybrid AHP-TOPSIS approach. It also provides a cost–benefit analysis with short-term and long-term horizons. It further pinpoints the environmental issues with the installation of substation technology.

Details

International Journal of Energy Sector Management, vol. 18 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 5 June 2023

Mehdi Ebrahimi, David S-K. Ting and Rupp Carriveau

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced…

Abstract

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced. This technology can be made more sustainable by recovering the heat of the compression phase and reusing it during the discharge phase, resulting in an adiabatic CAES without the need for burning of fossil fuels. The key process parameters of CAES are temperature, pressure ratios, and the mass flow rates of air and thermal fluids. The variation in these parameters during the charge and discharge phases significantly influences the performance of CAES plants. In this chapter, the transient thermodynamic behavior of the system under various operating conditions is analyzed and the impact of heat recovery on the discharge phase energy efficiency, power generation, and CO2 emissions is studied. Simulations are carried out over the air pressure range from 2,500 to 7,000 kPa for a 65 MW system over a five-hour discharge duration. It is also assumed that the heat loss in the air storage and the hot thermal fluid tank is insignificant and standby duration does not impact the status of the system. This result shows that the system exergy and the generated power are more sensitive to pressure change at higher pressures. This work also reveals that every 10°C increase on the temperature of the stored air can lead to a 0.83% improvement in the energy efficiency. The result of the transient thermodynamic model is used to estimate the reduction in CO2 emissions in CAES systems. According to the obtained result, a 65 MW ACAES plant can reduce about 17,794 tons of CO2 emission per year compared to a traditional CAES system with the same capacity.

Article
Publication date: 26 July 2023

Aarzoo Sharma, Aviral Kumar Tiwari, Emmanuel Joel Aikins Abakah and Freeman Brobbey Owusu

This paper aims to examine the cross-quantile correlation and causality-in-quantiles between green investments and energy commodities during the outbreak of COVID-19. To be…

Abstract

Purpose

This paper aims to examine the cross-quantile correlation and causality-in-quantiles between green investments and energy commodities during the outbreak of COVID-19. To be specific, the authors aim to address the following questions: Is there any distributional predictability among green bonds and energy commodities during COVID-19? Is there exist any directional predictability between green investments and energy commodities during the global pandemic? Can green bonds hedge the risk of energy commodities during a period of the financial crisis.

Design/methodology/approach

The authors use the nonparametric causality in quantile and cross-quantilogram (CQ) correlation approaches as the estimation techniques to investigate the distributional and directional predictability between green investments and energy commodities respectively using daily spot prices from January 1, 2020, to March 26, 2021. The study uses daily closing price indices S&P Green Bond Index as a representative of the green bond market. In the case of energy commodities, the authors use S&P GSCI Natural Gas Spot, S&P GSCI Biofuel Spot, S&P GSCI Unleaded Gasoline Spot, S&P GSCI Gas Oil Spot, S&P GSCI Brent Crude Spot, S&P GSCI WTI, OPEC Oil Basket Price, Crude Oil Oman, Crude Oil Dubai Cash, S&P GSCI Heating Oil Spot, S&P Global Clean Energy, US Gulf Coast Kerosene and Los Angeles Low Sulfur CARB Diesel Spot.

Findings

From the CQ correlation results, there exists an overall negative directional predictability between green bonds and natural gas. The authors find that the directional predictability between green bonds and S&P GSCI Biofuel Spot, S&P GSCI Gas Oil Spot, S&P GSCI Brent Crude Spot, S&P GSCI WTI Spot, OPEC Oil Basket Spot, Crude Oil Oman Spot, Crude Oil Dubai Cash Spot, S&P GSCI Heating Oil Spot, US Gulf Coast Kerosene-Type Jet Fuel Spot Price and Los Angeles Low Sulfur CARB Diesel Spot Price is negative during normal market conditions and positive during extreme market conditions. Results from the non-parametric causality in the quantile approach show strong evidence of asymmetry in causality across quantiles and strong variations across markets.

Practical implications

The quantile time-varying dependence and predictability results documented in this paper can help market participants with different investment targets and horizons adopt better hedging strategies and portfolio diversification to aid optimal policy measures during volatile market conditions.

Social implications

The outcome of this study will promote awareness regarding the environment and also increase investor’s participation in the green bond market. Further, it allows corporate institutions to fulfill their social commitment through the issuance of green bonds.

Originality/value

This paper differs from these previous studies in several aspects. First, the authors have included a wide range of energy commodities, comprising three green bond indices and 14 energy commodity indices. Second, the authors have explored the dependency between the two markets, particularly during COVID-19 pandemic. Third, the authors have applied CQ and causality-in-quantile methods on the given data set. Since the market of green and sustainable finance is growing drastically and the world is transmitting toward environment-friendly practices, it is essential and vital to understand the impact of green bonds on other financial markets. In this regard, the study contributes to the literature by documenting an in-depth connectedness between green bonds and crude oil, natural gas, petrol, kerosene, diesel, crude, heating oil, biofuels and other energy commodities.

Details

Studies in Economics and Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1086-7376

Keywords

Case study
Publication date: 30 May 2023

Sana Shawl, Keyurkumar M. Nayak and Nakul Gupta

On completion of the case, the students will be able to understand the concept and importance of sustainability; understand how triple bottom line can help a company make a…

Abstract

Learning outcomes

On completion of the case, the students will be able to understand the concept and importance of sustainability; understand how triple bottom line can help a company make a transition towards sustainability; evaluate the tensions between the three pillars of triple bottom line approach; assess the role of circular economy model as opposed to the conventional linear model in the transition of a company towards sustainability; and understand the sustainability challenge in an emerging market context.

Case overview/synopsis

Despite the promising growth potential of the plastics industry in India, it is faced with sustainability challenges owing to its detrimental impact on environment. To preserve the environment and human kind, the government made a bold announcement in 2018 to eliminate the use of highly polluting single-use plastics (SUPs) in the country. Amid this growing sustainability threat against plastics and the fall in demand of SUP items, this case illustrates that Sandip Patel, the plant manager of Cello Plastotech, is entrusted by the CEO with the responsibility of adopting a triple bottom line approach encompassing its three pillars, that is, people, planet and profits, as a response to the sustainability challenge. The strategic rethinking towards adopting sustainability required Patel to face the challenge of striking a balance between the three pillars of triple bottom line while also taking some valuable insights for plastic waste management from the circular economy model. While making a transition to sustainability, he needed to evaluate different options like stopping the manufacture of SUPs and look for alternatives, use of biodegradable raw material which was expensive but environment friendly or manufacture such durable plastic products that would replace SUPs.

Complexity academic level

The case is aimed at teaching the topic Triple Bottom Line approach in the courses of business strategy and sustainability in under-graduate and post-graduate level courses in the discipline of Management. It can also be used as a supplementary reading in courses like Corporate Social Responsibility and Circular Economy. In emerging markets’ context, these topics are generally taught to MBA students in courses like strategic management, sustainable business and business ethics.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 11: Strategy.

Details

Emerald Emerging Markets Case Studies, vol. 13 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 19 June 2023

Teng Wen, Xiaoyun Wei, Xuebao Li, Boyuan Cao and Zhibin Zhao

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal…

Abstract

Purpose

This paper aims to focus on the finite element method in the frequency domain (FD-FEM) for the transient electric field in the non-sinusoidal steady state under the non-sinusoidal periodic voltage excitation.

Design/methodology/approach

Firstly, the boundary value problem of the transient electric field in the frequency domain is described, and the finite element equation of the FD-FEM is derived by Galerkin’s method. Secondly, the constrained electric field equation on the boundary in the frequency domain (FD-CEFEB) is also derived, which can solve the electric field intensity on the boundary and the dielectric interface with high accuracy. Thirdly, the calculation procedures of the FD-FEM with FD-CEFEB are introduced in detail. Finally, a numerical example of the press-packed insulated gate bipolar transistor under the working condition of the repetitive turn-on and turn-off is given.

Findings

The FD-CEFEB improves numerical accuracy of electric field intensity on the boundary and interfacial charge density, which can be achieved by modifying the existing FD-FEMs’ code in appropriate steps. Moreover, the proposed FD-FEM and the FD-CEFEB will only increase calculation costs by a little compared with the traditional FD-FEMs.

Originality/value

The FD-CEFEB can directly solve the electric field intensity on the boundary and the dielectric interface with high accuracy. This paper provides a new FD-FEM for the transient electric field in the non-sinusoidal steady state with high accuracy, which is suitable for combined insulation structure with a long time constant.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 27 October 2023

Margot Hurlbert, Tanushree Das and Charisse Vitto

This study aims to report business preferences for achieving net-zero power production emissions in Saskatchewan, Canada as well as business perceptions of the most preferable…

472

Abstract

Purpose

This study aims to report business preferences for achieving net-zero power production emissions in Saskatchewan, Canada as well as business perceptions of the most preferable power production sources, barriers to change and suggestions for improvement. Mixed methods included focus groups and a survey with experimental design. This research demonstrates that this method of advancing academic and business knowledge systems can engender a paradigmatic shift to decarbonization.

Design/methodology/approach

The study is a mixed-methods study using five focus groups and a survey which included a 15-min information video providing more information on power production sources (small modular reactors and biomass). Participants requested more information on these topics in the initial three focus groups.

Findings

There is a significant gap in Canadian Government targets for net-zero emissions by 2050 and businesses’ plans. Communications, knowledge and capacity gaps identified include lack of regulatory requirements, institutional barriers (including a capacity charge in the event a business chooses to self-generate with a cleaner source) and multi-level governance dissonance. More cooperation between provincial governments and the federal government was identified by participants as a requirement for achieving targets. Providing information to survey respondents increased support for clean and renewable sources, but gender and knowledge are still important characteristics contributing to support for different power production sources. Scientists and teachers were the most trusted sources of information. Power generated from small modular nuclear reactors was identified as the primary future source of power production followed by solar, wind and natural gas. Research results also confirmed the high level of support for hydropower generated in Saskatchewan versus import from Manitoba based on high values of energy solidarity and security within the province.

Originality/value

This study is original, as it concerns upstream system power production portfolios and not failed projects; the mixed-method research design including a focus group and an experimental survey is novel. This research partially addresses a gap in knowledge surrounding which knowledge systems advance paradigmatic shifts and how and whether involving business people in upstream power production decisions can inform decarbonization.

Details

International Journal of Climate Change Strategies and Management, vol. 16 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Abstract

Details

Embracing Chaos
Type: Book
ISBN: 978-1-83753-635-1

Case study
Publication date: 10 October 2023

Promila Agarwal and Amit Karna

The case describes the internal growth workshop initiative at Vedanta Group. Anil Agarwal in 1976 founded Vedanta as a scrap-metal dealership in Mumbai (then Bombay). Over the…

Abstract

The case describes the internal growth workshop initiative at Vedanta Group. Anil Agarwal in 1976 founded Vedanta as a scrap-metal dealership in Mumbai (then Bombay). Over the years, Anil pursued a very aggressive growth journey with a vision to create a leading global natural resource company. The principal objective of discussing this case is to understand how Vedanta introduced this initiative and how it fits within the strategic human resource management at the group.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management, Ahmedabad

Keywords

1 – 10 of 101