Search results

1 – 10 of 176
Article
Publication date: 26 February 2024

Chong Wu, Xiaofang Chen and Yongjie Jiang

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of…

Abstract

Purpose

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of enterprises and also jeopardizes the interests of investors. Therefore, it is important to understand how to accurately and reasonably predict the financial distress of enterprises.

Design/methodology/approach

In the present study, ensemble feature selection (EFS) and improved stacking were used for financial distress prediction (FDP). Mutual information, analysis of variance (ANOVA), random forest (RF), genetic algorithms, and recursive feature elimination (RFE) were chosen for EFS to select features. Since there may be missing information when feeding the results of the base learner directly into the meta-learner, the features with high importance were fed into the meta-learner together. A screening layer was added to select the meta-learner with better performance. Finally, Optima hyperparameters were used for parameter tuning by the learners.

Findings

An empirical study was conducted with a sample of A-share listed companies in China. The F1-score of the model constructed using the features screened by EFS reached 84.55%, representing an improvement of 4.37% compared to the original features. To verify the effectiveness of improved stacking, benchmark model comparison experiments were conducted. Compared to the original stacking model, the accuracy of the improved stacking model was improved by 0.44%, and the F1-score was improved by 0.51%. In addition, the improved stacking model had the highest area under the curve (AUC) value (0.905) among all the compared models.

Originality/value

Compared to previous models, the proposed FDP model has better performance, thus bridging the research gap of feature selection. The present study provides new ideas for stacking improvement research and a reference for subsequent research in this field.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 June 2023

Peipei Wang, Peter Fenn and Kun Wang

This paper aims to devise a case-controlled method combined with Bradford Hill criteria for causal inference of contractual disputes in construction projects. It is a genuine…

Abstract

Purpose

This paper aims to devise a case-controlled method combined with Bradford Hill criteria for causal inference of contractual disputes in construction projects. It is a genuine attempt in a systematic method from research design to execution for causal issues where only observational data is available.

Design/methodology/approach

The authors located insufficient top management support as the putative pathogen of construction disputes based on a literature review, an interview and Delphi surveys. A questionnaire survey was then conducted to collect case-controlled data to ensure comparability, in which for each disputed project put in the experimental group, the authors sought for a dispute-free project of similar characteristics. The incidence rates of insufficient top management support in the experimental and control groups were then examined by Bradford Hill criteria as an alternative to the test of intervention effect.

Findings

The association of insufficient top management support and construction disputes was tested to conform with the Bradford Hill criteria with case-controlled data where applicable and logical deduction where statistical tests were not applicable. With a clear, positive, reasonable and statistically significant association, while excluding methodological biases, confounding and chance, the authors reached a causal verdict of insufficient top management support causing contractual disputes.

Originality/value

This paper supports the validity of applying a case-controlled method combined with Bradford Hill criteria in investigating causal issues in project management, especially the verdict of causal inference based on empirical data. In addition, the located root cause of contractual disputes could inform project management personnel with reasoned strategies for dispute avoidance.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 January 2024

Chong Wu, Zijiao Zhang, Chang Liu and Yiwen Zhang

This paper aims to propose a bed and breakfast (B&B) recommendation method that takes into account review timeliness and user preferences to help consumers choose the most…

Abstract

Purpose

This paper aims to propose a bed and breakfast (B&B) recommendation method that takes into account review timeliness and user preferences to help consumers choose the most satisfactory B&B.

Design/methodology/approach

This paper proposes a B&B ranking method based on improved intuitionistic fuzzy sets. First, text mining and cluster analysis are combined to identify the concerns of consumers and construct an attribute set. Second, an attribute-level-based text sentiment analysis is established. The authors propose an improved intuitionistic fuzzy set, which is more in line with the actual situation of sentiment analysis of online reviews. Next, subjective-objective combinatorial assignments are applied, considering the consumers’ preferences. Finally, the vlsekriterijumska optimizacija i kompromisno resenje (VIKOR) algorithm, based on the improved score function, is advised to evaluate B&Bs.

Findings

A case study is presented to illustrate the use of the proposed method. Comparative analysis with other multi-attribute decision-making (MADM) methods proves the effectiveness and superiority of the VIKOR algorithm based on the improved intuitionistic fuzzy sets proposed in this paper.

Originality/value

Proposing a B&B recommendation method that takes into account review timeliness and user customization is the innovation of this paper. In this approach, the authors propose improved intuitionistic fuzzy sets. Compared with the traditional intuitionistic fuzzy set, the improved intuitionistic fuzzy set increases the abstention membership, which is more in line with the actual situation of attribute-level sentiment analysis of online reviews.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 October 2023

Chinthaka Niroshan Atapattu, Niluka Domingo and Monty Sutrisna

Cost overrun in infrastructure projects is a constant concern, with a need for a proper solution. The current estimation practice needs improvement to reduce cost overruns. This…

Abstract

Purpose

Cost overrun in infrastructure projects is a constant concern, with a need for a proper solution. The current estimation practice needs improvement to reduce cost overruns. This study aimed to find possible statistical modelling techniques that could be used to develop cost models to produce more reliable cost estimates.

Design/methodology/approach

A bibliographic literature review was conducted using a two-stage selection method to compile the relevant publications from Scopus. Then, Visualisation of Similarities (VOS)-Viewer was used to develop the visualisation maps for co-occurrence keyword analysis and yearly trends in research topics.

Findings

The study found seven primary techniques used as cost models in construction projects: regression analysis (RA), artificial neural network (ANN), case-based reasoning (CBR), fuzzy logic, Monte-Carlo simulation (MCS), support vector machine (SVM) and reference class forecasting (RCF). RA, ANN and CBR were the most researched techniques. Furthermore, it was observed that the model's performance could be improved by combining two or more techniques into one model.

Research limitations/implications

The research was limited to the findings from the bibliometric literature review.

Practical implications

The findings provided an assessment of statistical techniques that the industry can adopt to improve the traditional estimation practice of infrastructure projects.

Originality/value

This study mapped the research carried out on cost-modelling techniques and analysed the trends. It also reviewed the performance of the models developed for infrastructure projects. The findings could be used to further research to develop more reliable cost models using statistical modelling techniques with better performance.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 8 December 2023

Armin Mahmoodi, Leila Hashemi, Amin Mahmoodi, Benyamin Mahmoodi and Milad Jasemi

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese…

Abstract

Purpose

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese Candlestick, which is combined by the following meta heuristic algorithms: support vector machine (SVM), meta-heuristic algorithms, particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).

Design/methodology/approach

In addition, among the developed algorithms, the most effective one is chosen to determine probable sell and buy signals. Moreover, the authors have proposed comparative results to validate the designed model in this study with the same basic models of three articles in the past. Hence, PSO is used as a classification method to search the solution space absolutelyand with the high speed of running. In terms of the second model, SVM and ICA are examined by the time. Where the ICA is an improver for the SVM parameters. Finally, in the third model, SVM and GA are studied, where GA acts as optimizer and feature selection agent.

Findings

Results have been indicated that, the prediction accuracy of all new models are high for only six days, however, with respect to the confusion matrixes results, it is understood that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the authors to analyze the data the long length of time between the years 2013–2021, makes the input data analysis challenging. They must be changed with respect to the conditions.

Originality/value

In this study, two methods have been developed in a candlestick model, they are raw based and signal-based approaches which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

Journal of Capital Markets Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-4774

Keywords

Article
Publication date: 21 November 2023

Armin Mahmoodi, Leila Hashemi and Milad Jasemi

In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid…

Abstract

Purpose

In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid models have been developed for the stock markets which are a combination of support vector machine (SVM) with meta-heuristic algorithms of particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).All the analyses are technical and are based on the Japanese candlestick model.

Design/methodology/approach

Further as per the results achieved, the most suitable algorithm is chosen to anticipate sell and buy signals. Moreover, the authors have compared the results of the designed model validations in this study with basic models in three articles conducted in the past years. Therefore, SVM is examined by PSO. It is used as a classification agent to search the problem-solving space precisely and at a faster pace. With regards to the second model, SVM and ICA are tested to stock market timing, in a way that ICA is used as an optimization agent for the SVM parameters. At last, in the third model, SVM and GA are studied, where GA acts as an optimizer and feature selection agent.

Findings

As per the results, it is observed that all new models can predict accurately for only 6 days; however, in comparison with the confusion matrix results, it is observed that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the data for stock market of the years 2013–2021 were analyzed; the long length of timeframe makes the input data analysis challenging as they must be moderated with respect to the conditions where they have been changed.

Originality/value

In this study, two methods have been developed in a candlestick model; they are raw-based and signal-based approaches in which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 25 September 2023

José Félix Yagüe, Ignacio Huitzil, Carlos Bobed and Fernando Bobillo

There is an increasing interest in the use of knowledge graphs to represent real-world knowledge and a common need to manage imprecise knowledge in many real-world applications…

Abstract

Purpose

There is an increasing interest in the use of knowledge graphs to represent real-world knowledge and a common need to manage imprecise knowledge in many real-world applications. This paper aims to study approaches to solve flexible queries over knowledge graphs.

Design/methodology/approach

By introducing fuzzy logic in the query answering process, the authors are able to obtain a novel algorithm to solve flexible queries over knowledge graphs. This approach is implemented in the FUzzy Knowledge Graphs system, a software tool with an intuitive user-graphical interface.

Findings

This approach makes it possible to reuse semantic web standards (RDF, SPARQL and OWL 2) and builds a fuzzy layer on top of them. The application to a use case shows that the system can aggregate information in different ways by selecting different fusion operators and adapting to different user needs.

Originality/value

This approach is more general than similar previous works in the literature and provides a specific way to represent the flexible restrictions (using fuzzy OWL 2 datatypes).

Details

The Electronic Library , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 18 September 2023

Fatma Ben Hamadou, Taicir Mezghani, Ramzi Zouari and Mouna Boujelbène-Abbes

This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine…

Abstract

Purpose

This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine learning techniques, before and during the COVID-19 pandemic. More specifically, the authors investigate the impact of the investor's sentiment on forecasting the Bitcoin returns.

Design/methodology/approach

This method uses feature selection techniques to assess the predictive performance of the different factors on the Bitcoin returns. Subsequently, the authors developed a forecasting model for the Bitcoin returns by evaluating the accuracy of three machine learning models, namely the one-dimensional convolutional neural network (1D-CNN), the bidirectional deep learning long short-term memory (BLSTM) neural networks and the support vector machine model.

Findings

The findings shed light on the importance of the investor's sentiment in enhancing the accuracy of the return forecasts. Furthermore, the investor's sentiment, the economic policy uncertainty (EPU), gold and the financial stress index (FSI) are the top best determinants before the COVID-19 outbreak. However, there was a significant decrease in the importance of financial uncertainty (FSI and EPU) during the COVID-19 pandemic, proving that investors attach much more importance to the sentimental side than to the traditional uncertainty factors. Regarding the forecasting model accuracy, the authors found that the 1D-CNN model showed the lowest prediction error before and during the COVID-19 and outperformed the other models. Therefore, it represents the best-performing algorithm among its tested counterparts, while the BLSTM is the least accurate model.

Practical implications

Moreover, this study contributes to a better understanding relevant for investors and policymakers to better forecast the returns based on a forecasting model, which can be used as a decision-making support tool. Therefore, the obtained results can drive the investors to uncover potential determinants, which forecast the Bitcoin returns. It actually gives more weight to the sentiment rather than financial uncertainties factors during the pandemic crisis.

Originality/value

To the authors’ knowledge, this is the first study to have attempted to construct a novel crypto sentiment measure and use it to develop a Bitcoin forecasting model. In fact, the development of a robust forecasting model, using machine learning techniques, offers a practical value as a decision-making support tool for investment strategies and policy formulation.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 24 August 2023

Tanveer Kajla, Kirti Sood, Sanjay Gupta, Sahil Raj and Harpreet Singh

The objective of this research is to identify and prioritize the critical factors that influence the adoption of blockchain technology within the banking sector.

Abstract

Purpose

The objective of this research is to identify and prioritize the critical factors that influence the adoption of blockchain technology within the banking sector.

Design/methodology/approach

A well-known theoretical framework, the “Technology Organization Environment (TOE),” was chosen to analyze what criteria and sub-criteria affect blockchain adoption in the banking sector after a thorough assessment of the prior literature. Following that, 3 evaluation criteria and 14 sub-criteria were selected and verified using expert opinion. A survey design was created, and data for the study has been collected from various information technology (IT) managers/officers in the banking sector. A fuzzy analytic hierarchy process (Fuzzy-AHP) was then used to meet the purpose of the research.

Findings

The study identified that the organizational dimension is the most significant criteria for blockchain adoption in the banking sector, followed by the environmental dimension. In contrast, the technological dimension is the least influential criterion. Clientele pressure, IT resources, financial resources, pressure from competitors and relative advantage are the most influential sub-criteria for blockchain adoption.

Research limitations/implications

This study provides valuable insights to bank managers, blockchain and IT developers, third-party service providers and policymakers. For instance, adopting the same blockchain platform is easier for both large and small banks for banking operations by using third-party service provider. At the same time, banks should have the banks' own core team to implement the blockchain-based systems or to have control over the third-party service providers during the adoption stage.

Originality/value

To the best of the authors' knowledge, no empirical studies have used a holistic organizational context to understand the factors influencing the adoption of blockchain technology from traditional to blockchain-based banking systems.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 27 March 2024

Temesgen Agazhie and Shalemu Sharew Hailemariam

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Abstract

Purpose

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Design/methodology/approach

We employed fuzzy techniques for order preference by similarity to the ideal solution (FTOPSIS), fuzzy analytical hierarchy process (FAHP), and failure mode effect analysis (FMEA) to determine the causes of defects. To determine the current defect cause identification procedures, time studies, checklists, and process flow charts were employed. The study focuses on the sewing department of a clothing industry in Addis Ababa, Ethiopia.

Findings

These techniques outperform conventional techniques and offer a better solution for challenging decision-making situations. Each lean waste’s FMEA criteria, such as severity, occurrence, and detectability, were examined. A pairwise comparison revealed that defect has a larger effect than other lean wastes. Defects were mostly caused by inadequate operator training. To minimize lean waste, prioritizing their causes is crucial.

Research limitations/implications

The research focuses on a case company and the result could not be generalized for the whole industry.

Practical implications

The study used quantitative approaches to quantify and prioritize the causes of lean waste in the garment industry and provides insight for industrialists to focus on the waste causes to improve their quality performance.

Originality/value

The methodology of integrating FMEA with FAHP and FTOPSIS was the new contribution to have a better solution to decision variables by considering the severity, occurrence, and detectability of the causes of wastes. The data collection approach was based on experts’ focus group discussion to rate the main causes of defects which could provide optimal values of defect cause prioritization.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 176