Search results

1 – 10 of 226
Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Open Access
Article
Publication date: 13 May 2021

Devin DePalmer, Steven Schuldt and Justin Delorit

Limited facilities operating and modernization budgets require organizations to carefully identify, prioritize and authorize projects to ensure allocated resources align with…

1189

Abstract

Purpose

Limited facilities operating and modernization budgets require organizations to carefully identify, prioritize and authorize projects to ensure allocated resources align with strategic objectives. Traditional facility prioritization methods using risk matrices can be improved to increase granularity in categorization and avoid mathematical error or human cognitive biases. These limitations restrict the utility of prioritizations and if erroneously used to select projects for funding, they can lead to wasted resources. This paper aims to propose a novel facility prioritization methodology that corrects these assessment design and implementation issues.

Design/methodology/approach

A Mamdani fuzzy logic inference system is coupled with a traditional, categorical risk assessment framework to understand a facilities’ consequence of failure and its effect on an organization’s strategic objectives. Model performance is evaluated using the US Air Force’s facility portfolio, which has been previously assessed, treating facility replicability and interruptability as minimization objectives. The fuzzy logic inference system is built to account for these objectives, but as proof of ease-of-adaptation, facility dependency is added as an additional risk assessment criterion.

Findings

Results of the fuzzy logic-based approach show a high degree of consistency with the traditional approach, though the value of the information provided by the framework developed here is considerably higher, as it creates a continuous set of facility prioritizations that are unbiased. The fuzzy logic framework is likely suitable for implementation by diverse, spatially distributed organizations in which decision-makers seek to balance risk assessment complexity with an output value.

Originality/value

This paper fills the identified need for portfolio management strategies that focus on prioritizing projects by risk to organizational operations or objectives.

Details

Journal of Facilities Management , vol. 19 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 21 June 2019

Muhammad Zahir Khan and Muhammad Farid Khan

A significant number of studies have been conducted to analyze and understand the relationship between gas emissions and global temperature using conventional statistical…

3268

Abstract

Purpose

A significant number of studies have been conducted to analyze and understand the relationship between gas emissions and global temperature using conventional statistical approaches. However, these techniques follow assumptions of probabilistic modeling, where results can be associated with large errors. Furthermore, such traditional techniques cannot be applied to imprecise data. The purpose of this paper is to avoid strict assumptions when studying the complex relationships between variables by using the three innovative, up-to-date, statistical modeling tools: adaptive neuro-fuzzy inference systems (ANFIS), artificial neural networks (ANNs) and fuzzy time series models.

Design/methodology/approach

These three approaches enabled us to effectively represent the relationship between global carbon dioxide (CO2) emissions from the energy sector (oil, gas and coal) and the average global temperature increase. Temperature was used in this study (1900-2012). Investigations were conducted into the predictive power and performance of different fuzzy techniques against conventional methods and among the fuzzy techniques themselves.

Findings

A performance comparison of the ANFIS model against conventional techniques showed that the root means square error (RMSE) of ANFIS and conventional techniques were found to be 0.1157 and 0.1915, respectively. On the other hand, the correlation coefficients of ANN and the conventional technique were computed to be 0.93 and 0.69, respectively. Furthermore, the fuzzy-based time series analysis of CO2 emissions and average global temperature using three fuzzy time series modeling techniques (Singh, Abbasov–Mamedova and NFTS) showed that the RMSE of fuzzy and conventional time series models were 110.51 and 1237.10, respectively.

Social implications

The paper provides more awareness about fuzzy techniques application in CO2 emissions studies.

Originality/value

These techniques can be extended to other models to assess the impact of CO2 emission from other sectors.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Content available
Book part
Publication date: 21 May 2020

Jagdeep Singh, Harwinder Singh and Bhupinder Singh

Abstract

Details

Prioritization of Failure Modes in Manufacturing Processes
Type: Book
ISBN: 978-1-83982-142-4

Open Access
Article
Publication date: 12 May 2021

Movin Sequeira, Per Hilletofth and Anders Adlemo

The existing literature expresses a strong need to develop tools that support the manufacturing reshoring decision-making process. This paper aims to examine the suitability of…

2099

Abstract

Purpose

The existing literature expresses a strong need to develop tools that support the manufacturing reshoring decision-making process. This paper aims to examine the suitability of analytical hierarchy process (AHP)-based tools for initial screening of manufacturing reshoring decisions.

Design/methodology/approach

Two AHP-based tools for the initial screening of manufacturing reshoring decisions are developed. The first tool is based on traditional AHP, while the second is based on fuzzy-AHP. Six high-level and holistic reshoring criteria based on competitive priorities were identified through a literature review. Next, a panel of experts from a Swedish manufacturing company was involved in the overall comparison of the criteria. Based on this comparison, priority weights of the criteria were obtained through a pairwise analysis. Subsequently, the priority weights were used in a weighted-sum manner to evaluate 20 reshoring scenarios. Afterwards, the outputs from the traditional AHP and fuzzy-AHP tools were compared to the opinions of the experts. Finally, a sensitivity analysis was performed to evaluate the stability of the developed decision support tools.

Findings

The research demonstrates that AHP-based support tools are suitable for the initial screening of manufacturing reshoring decisions. With regard to the presented set of criteria and reshoring scenarios, both traditional AHP and fuzzy-AHP are shown to be consistent with the experts' decisions. Moreover, fuzzy-AHP is shown to be marginally more reliable than traditional AHP. According to the sensitivity analysis, the order of importance of the six criteria is stable for high values of weights of cost and quality criteria.

Research limitations/implications

The limitation of the developed AHP-based tools is that they currently only include a limited number of high-level decision criteria. Therefore, future research should focus on adding low-level criteria to the tools using a multi-level architecture. The current research contributes to the body of literature on the manufacturing reshoring decision-making process by addressing decision-making issues in general and by demonstrating the suitability of two decision support tools applied to the manufacturing reshoring field in particular.

Practical implications

This research provides practitioners with two decision support tools for the initial screening of manufacturing reshoring decisions, which will help managers optimize their time and resources on the most promising reshoring alternatives. Given the complex nature of reshoring decisions, the results from the fuzzy-AHP are shown to be slightly closer to those of the experts than traditional AHP for initial screening of manufacturing relocation decisions.

Originality/value

This paper describes two decision support tools that can be applied for the initial screening of manufacturing reshoring decisions while considering six high-level and holistic criteria. Both support tools are applied to evaluate 20 identical manufacturing reshoring scenarios, allowing a comparison of their output. The sensitivity analysis demonstrates the relative importance of the reshoring criteria.

Details

Journal of Global Operations and Strategic Sourcing, vol. 14 no. 3
Type: Research Article
ISSN: 2398-5364

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Abstract

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Open Access
Article
Publication date: 4 November 2022

Bianca Caiazzo, Teresa Murino, Alberto Petrillo, Gianluca Piccirillo and Stefania Santini

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status…

2956

Abstract

Purpose

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status and detect eventual anomalies occurring into the production. A novel artificial intelligence (AI) based technique, able to identify the specific anomalous event and the related risk classification for possible intervention, is hence proposed.

Design/methodology/approach

The proposed solution is a five-layer scalable and modular platform in Industry 5.0 perspective, where the crucial layer is the Cloud Cyber one. This embeds a novel anomaly detection solution, designed by leveraging control charts, autoencoders (AE) long short-term memory (LSTM) and Fuzzy Inference System (FIS). The proper combination of these methods allows, not only detecting the products defects, but also recognizing their causalities.

Findings

The proposed architecture, experimentally validated on a manufacturing system involved into the production of a solar thermal high-vacuum flat panel, provides to human operators information about anomalous events, where they occur, and crucial information about their risk levels.

Practical implications

Thanks to the abnormal risk panel; human operators and business managers are able, not only of remotely visualizing the real-time status of each production parameter, but also to properly face with the eventual anomalous events, only when necessary. This is especially relevant in an emergency situation, such as the COVID-19 pandemic.

Originality/value

The monitoring platform is one of the first attempts in leading modern manufacturing systems toward the Industry 5.0 concept. Indeed, it combines human strengths, IoT technology on machines, cloud-based solutions with AI and zero detect manufacturing strategies in a unified framework so to detect causalities in complex dynamic systems by enabling the possibility of products’ waste avoidance.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 4
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 31 March 2023

Idoya Ferrero-Ferrero, María Jesús Muñoz-Torres, Juana María Rivera-Lirio, Elena Escrig-Olmedo and María Ángeles Fernández-Izquierdo

This study aims to empirically analyze a sound commitment and a consistent integration of sustainable development goals (SDGs) in the corporate reporting and management systems of…

3793

Abstract

Purpose

This study aims to empirically analyze a sound commitment and a consistent integration of sustainable development goals (SDGs) in the corporate reporting and management systems of companies that have a leading position in sustainability.

Design/methodology/approach

The study applies a content analysis procedure based on a proposed analytical framework to codify the commitment and the SDG integration. In order to analyze the consistency of the integration, this study has provided a “SDG integration” score based on fuzzy inference systems methods. The companies in the sample have been identified as benchmarks in terms of sustainability in a specific region of Spain.

Findings

The findings show a lack of formality regarding the SDG commitment at the highest decision-making level and a low level of SDG integration in the reporting and management systems. These results are mainly explained because the most companies do not prioritize according to the materiality analysis and those SDGs more reported have not been deployed along targets and KPIs in a consistent way.

Research limitations/implications

The results provide practical implications that help to overcome the limitations in terms of comparison and consistency of the SDGs-reported information. It also illustrates how the leading sustainable companies are doing the SDG reporting and suggests which elements could be improved to promote a consistent integration of the SDGs in the management systems.

Originality/value

This study provides new work lines in the promotion of an effective SDG-business reporting based on a robust management structure that allows an alignment among the SDG-business decisions based on a normative, strategic and operational approach.

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

1 – 10 of 226