Search results

1 – 10 of 14
Article
Publication date: 30 May 2024

Baharak Hooshyarfarzin, Mostafa Abbaszadeh and Mehdi Dehghan

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Abstract

Purpose

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Design/methodology/approach

First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.

Findings

Numerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.

Originality/value

This is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 July 2024

Reza Masoumzadeh, Mostafa Abbaszadeh and Mehdi Dehghan

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Abstract

Purpose

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Design/methodology/approach

First, the derivative of the temporal direction is discretized by a second-order linearized finite difference scheme where it conserves the energy stability of the mathematical model. Then, the isogeometric collocation (IGC) method is used to approximate the derivative of spacial direction. The IGC procedure can be applied on irregular physical domains. The IGC method is constructed based upon the nonuniform rational B-splines (NURBS). Each curve and surface can be approximated by the NURBS. Also, a map will be defined to project the physical domain to a simple computational domain. In this procedure, the partial derivatives will be transformed to the new domain by the Jacobian and Hessian matrices. According to the mentioned procedure, the first- and second-order differential matrices are built. Furthermore, the pseudo-spectral algorithm is used to derive the first- and second-order nodal differential matrices. In the end, the Greville Abscissae points are used to the collocation method.

Findings

In the numerical experiments, the efficiency and accuracy of the proposed method are assessed through two examples, demonstrating its performance on both rectangular and nonrectangular domains.

Originality/value

This research work introduces the IGC method as a simulation technique for the phase-field crystal model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 August 2024

Ersin Bahar and Gurhan Gurarslan

The purpose of this study is to introduce a new numerical scheme with no stability condition and high-order accuracy for the solution of two-dimensional coupled groundwater flow…

Abstract

Purpose

The purpose of this study is to introduce a new numerical scheme with no stability condition and high-order accuracy for the solution of two-dimensional coupled groundwater flow and transport simulation problems with regular and irregular geometries and compare the results with widely acceptable programs such as Modular Three-Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) and Modular Three-Dimensional Multispecies Transport Model (MT3DMS).

Design/methodology/approach

The newly proposed numerical scheme is based on the method of lines (MOL) approach and uses high-order approximations both in space and time. Quintic B-spline (QBS) functions are used in space to transform partial differential equations, representing the relevant physical phenomena in the system of ordinary differential equations. Then this system is solved with the DOPRI5 algorithm that requires no stability condition. The obtained results are compared with the results of the MODFLOW and MT3DMS programs to verify the accuracy of the proposed scheme.

Findings

The results indicate that the proposed numerical scheme can successfully simulate the two-dimensional coupled groundwater flow and transport problems with complex geometry and parameter structures. All the results are in good agreement with the reference solutions.

Originality/value

To the best of the authors' knowledge, the QBS-DOPRI5 method is used for the first time for solving two-dimensional coupled groundwater flow and transport problems with complex geometries and can be extended to high-dimensional problems. In the future, considering the success of the proposed numerical scheme, it can be used successfully for the identification of groundwater contaminant source characteristics.

Details

Engineering Computations, vol. 41 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2024

Aamir Rashid, Rizwana Rasheed, Abdul Hafaz Ngah and Noor Aina Amirah

Recent disruptions have sparked concern about building a resilient and sustainable manufacturing supply chain. While artificial intelligence (AI) strengthens resilience, research…

Abstract

Purpose

Recent disruptions have sparked concern about building a resilient and sustainable manufacturing supply chain. While artificial intelligence (AI) strengthens resilience, research is needed to understand how cloud adoption can foster integration, collaboration, adaptation and sustainable manufacturing. Therefore, this study aimed to unleash the power of cloud adoption and AI in optimizing resilience and sustainable performance through collaboration and adaptive capabilities at manufacturing firms.

Design/methodology/approach

This research followed a deductive approach and employed a quantitative method with a survey technique to collect data from its target population. The study used stratified random sampling with a sample size of 1,279 participants working in diverse manufacturing industries across California, Texas and New York.

Findings

This research investigated how companies can make their manufacturing supply chains more resilient and sustainable. The findings revealed that integrating the manufacturing supply chains can foster collaboration and enhance adaptability, leading to better performance (hypotheses H1-H7, except H5). Additionally, utilizing artificial intelligence helps improve adaptability, further strengthening resilience and sustainability (H8-H11). Interestingly, the study found that internal integration alone does not significantly impact collaboration (H5). This suggests that external factors are more critical in fostering collaboration within the manufacturing supply chain during disruptions.

Originality/value

This study dives into the complex world of interconnected factors (formative constructs in higher order) influencing manufacturing supply chains. Using advanced modeling techniques, it highlights the powerful impact of cloud-based integration. Cloud-based integration and artificial intelligence unlock significant improvements for manufacturers and decision-makers by enabling information processes and dynamic capability theory.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 26 August 2024

Elie Hachem, Abhijeet Vishwasrao, Maxime Renault, Jonathan Viquerat and P. Meliga

The premise of this research is that the coupling of reinforcement learning algorithms and computational dynamics can be used to design efficient control strategies and to improve…

Abstract

Purpose

The premise of this research is that the coupling of reinforcement learning algorithms and computational dynamics can be used to design efficient control strategies and to improve the cooling of hot components by quenching, a process that is classically carried out based on professional experience and trial-error methods. Feasibility and relevance are assessed on various 2-D numerical experiments involving boiling problems simulated by a phase change model. The purpose of this study is then to integrate reinforcement learning with boiling modeling involving phase change to optimize the cooling process during quenching.

Design/methodology/approach

The proposed approach couples two state-of-the-art in-house models: a single-step proximal policy optimization (PPO) deep reinforcement learning (DRL) algorithm (for data-driven selection of control parameters) and an in-house stabilized finite elements environment combining variational multi-scale (VMS) modeling of the governing equations, immerse volume method and multi-component anisotropic mesh adaptation (to compute the numerical reward used by the DRL agent to learn), that simulates boiling after a phase change model formulated after pseudo-compressible Navier–Stokes and heat equations.

Findings

Relevance of the proposed methodology is illustrated by controlling natural convection in a closed cavity with aspect ratio 4:1, for which DRL alleviates the flow-induced enhancement of heat transfer by approximately 20%. Regarding quenching applications, the DRL algorithm finds optimal insertion angles that adequately homogenize the temperature distribution in both simple and complex 2-D workpiece geometries, and improve over simpler trial-and-error strategies classically used in the quenching industry.

Originality/value

To the best of the authors’ knowledge, this constitutes the first attempt to achieve DRL-based control of complex heat and mass transfer processes involving boiling. The obtained results have important implications for the quenching cooling flows widely used to achieve the desired microstructure and material properties of steel, and for which differential cooling in various zones of the quenched component will yield irregular residual stresses that can affect the serviceability of critical machinery in sensitive industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 August 2024

Yanchao Sun, Jiayu Li, Hongde Qin and Yutong Du

Autonomous underwater vehicle (AUV) is widely used in resource prospection and underwater detection due to its excellent performance. This study considers input saturation…

Abstract

Purpose

Autonomous underwater vehicle (AUV) is widely used in resource prospection and underwater detection due to its excellent performance. This study considers input saturation, nonlinear model uncertainties and external ocean current disturbances. The containment errors can be limited to a small neighborhood of zero in finite time by employing control strategy. The control strategy can keep errors within a certain range between the trajectory followed by AUVs and their intended targets. This can mitigate the issues of collisions and disruptions in communication which may arise from AUVs being in close proximity or excessively distant from each other.

Design/methodology/approach

The tracking errors are constrained. Based on the directed communication topology, a cooperative formation control algorithm for multi-AUV systems with constrained errors is designed. By using the saturation function, state observers are designed to estimate the AUV’s velocity in six degrees of freedom. A new virtual control algorithm is designed through combining backstepping technique and the tan-type barrier Lyapunov function. Neural networks are used to estimate and compensate for the nonlinear model uncertainties and external ocean current disturbances. A neural network adaptive law is designed.

Findings

The containment errors can be limited to a small neighborhood of zero in finite time so that follower AUVs can arrive at the convex hull consisting of leader AUVs within finite time. The validity of the results is indicated by simulations.

Originality/value

The state observers are designed to approximate the speed of the AUV and improve the accuracy of the control method. The anti-saturation function and neural network adaptive law are designed to deal with input saturation and general disturbances, respectively. It can ensure the safety and reliability of the multiple AUV systems.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 7 February 2024

Keyur Sahasrabudhe, Gagan Prakash, Sophia Gaikwad and Vijay Shah

This study is an “Action-Research-based” bridge that connects sketching and photographic processes. The article’s objective encompasses designing, assessing and validating a…

Abstract

Purpose

This study is an “Action-Research-based” bridge that connects sketching and photographic processes. The article’s objective encompasses designing, assessing and validating a perceived difference between sketching and photography through a structured task by ensuring the systematic creation and implementation of the assignments. This study is part of a larger research project exploring the differences between thinking about sketching and final photographic outcomes.

Design/methodology/approach

This experimental mixed-method methodology was collected in three phases: the creation phase, where participants were asked to sketch and photograph a balanced composition; the evaluation phase, where the sketches and photographs were evaluated by “Self, Peer, and Independent” reviewers for their perceived differences. An analysis of variance (ANOVA) was implemented to test the result. In the validation phase, eye-tracking technology is applied to understand the subconscious eye movements of individuals.

Findings

This study of 37 samples has helped develop a self-study model in photography, as students have learnt to evaluate themselves critically. This experience will help students be active and reflective learners, thus increasing attention and retention in their course, specifically “Photography Design Education”. A pedagogical approach by design instructors for practical, student-friendly, process-oriented assignments for their photography courses in higher education.

Originality/value

The trans-mediation process requires cognition amongst different mediums, such as pencil and paper for sketching and light for light painting. Photography courses in design education need knowledge of the photo/light medium, contrasting with the understanding of sketching/drawing. Exploring and addressing research gaps for transforming and designing assignments based on adaptive understanding presents an exciting opportunity.

Details

Journal of Applied Research in Higher Education, vol. 16 no. 4
Type: Research Article
ISSN: 2050-7003

Keywords

Article
Publication date: 28 August 2024

Jingxuan Chai, Jie Mei, Youmin Gong, Weiren Wu, Guangfu Ma and Guoming Zhao

Asteroids have the characteristics of noncooperative, irregular gravity and complex terrain on the surface, which cause difficulties in successful landing for conventional…

Abstract

Purpose

Asteroids have the characteristics of noncooperative, irregular gravity and complex terrain on the surface, which cause difficulties in successful landing for conventional landers. The purpose of this paper is to study the trajectory tracking problem of a multi-node flexible lander with unknown flexible coefficient and space disturbance.

Design/methodology/approach

To facilitate the stability analysis, this paper constructs a simplified dynamic model of the multi-node flexible lander. By introducing the nonlinear transformation, a concurrent learning-based adaptive trajectory tracking guidance law is designed to ensure tracking performance, which uses both real-time information and historical data to estimate the parameters without persistent excitation (PE) conditions. A data selection algorithm is developed to enhance the richness of historical data, which can improve the convergence rate of the parameter estimation and the guidance performance.

Findings

Finally, Lyapunov stability theory is used to prove that the unknown parameters can converge to their actual value and, meanwhile, the closed-loop system is stable. The effectiveness of the proposed algorithm is further verified through simulations.

Originality/value

This paper provides a new design idea for future asteroid landers, and a trajectory tracking controller based on concurrent learning and preset performance is first proposed.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 August 2024

Vishag Badrinarayanan, Deva Rangarajan, Christine Lai-Bennejean, Melanie Bowen and Timo Arvid Kaski

Although organizations are investing heavily in digital transformation (DT) of the sales function, implementation and exploitation at the sales force level are ongoing challenges…

Abstract

Purpose

Although organizations are investing heavily in digital transformation (DT) of the sales function, implementation and exploitation at the sales force level are ongoing challenges. As sales managers serve as conduits of influence between top management and the sales force, the success of strategic initiatives, such as DT, hinges heavily on leveraging their influence to promote change adoption at the sales force level. Accordingly, this research is guided by the research question: how can sales organizations secure the buy-in of sales managers and induce their championing behaviors directed toward the sales force?. The purpose of this paper is to investigate how organizational and psychological resources influence sales managers' DT change champion through their change readiness.

Design/methodology/approach

Construing DT in sales as an organizational change that creates contextual job demands, the theoretical framework offers several hypotheses linking organizational and personal resources with sales managers’ change readiness and championing behaviors. The perceived impact of change is included as a moderating variable. Using data from a sample of 176 business-to-business sales managers, the hypotheses are tested using partial least squares structural equation modeling.

Findings

The authors demonstrate that two change-related organizational resources (change communication and change mobilization) and a personal psychological resource (psychological capital) facilitate sales managers’ emotional and cognitive change readiness, which, in turn, enhances their championing behaviors toward DT initiatives. Further, the authors find that perceived change impact augments the effects of organizational and psychological resources on change readiness, thus highlighting the importance of effective positioning of the outcomes of change.

Practical implications

This study provides practitioners with actionable guidance on securing the buy-in of sales managers for change initiatives such as DT. Specifically, communication and mobilization are critical inducements. Managers who score high on psychological capital can be targeted as change agents. Further, the impact of change needs to be framed positively, as the resultant perceptions magnify the effects of organizational resources.

Originality/value

While prior research has examined salespeople’s response to change, very little is known about the antecedents of change readiness and championing behavior among sales managers. Based on the results, the authors identify theoretical and managerial implications as well as future research directions.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 21 May 2024

Dongfei Li, Hongtao Wang and Ning Dai

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the…

Abstract

Purpose

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the automatic design of channel paths, intending to achieve the shortest flow channel length or minimum pressure loss and improve the design efficiency of AM parts.

Design/methodology/approach

The initial layout of the flow channels is redesigned to consider the channels print supports. Boundary conditions and constraints are defined according to the redesigned channels layout, and the equation consisting of channel length and pressure loss is used as the objective function. Then the path planning simulation is performed based on particle swarm algorithm. The proposed method describes the path of flow channels using spline cures. The spline curve is controlled by particle (one particle represents a path), and the particle is randomly generated within the design space. After the path planning simulation is completed, the generated paths are used to create 3D parts.

Findings

Case study 1 demonstrates the automatic design of hydraulic spool valve. Compared to conventional spool valve, the pressure loss was reduced by 86% and the mass was reduced by 83%. The design results of case study 2 indicate that this approach is able to find the shortest channel path with lower computational cost.

Originality/value

The automatic design method of flow channel paths driven by path length and pressure loss presented in this paper provides a novel solution for the creation of AM flow components.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 14