Search results

1 – 10 of 341
Article
Publication date: 9 May 2023

Yuhai Shen, Yanshuang Wang, Jianghai Lin, Pu Zhang, Xudong Gao and Zijun Wang

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives…

Abstract

Purpose

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives potassium borate (PB), zinc dialkyl dithiophosphate and molybdenum dialkyl dithiophosphate (MoDDP) and two compound additives on the friction, wear and extreme pressure properties of LG.

Design/methodology/approach

The effects of the above five additives on the friction, wear and extreme pressure properties of LG were investigated using an SRV-5 friction tester. An X-ray photoelectron spectrometer was used to analyze the various elements presented on the wear surface as well as the types of compounds.

Findings

The compound additive suitable for grease consists of PB and MoDDP, which have excellent friction reduction, anti-wear and extreme pressure properties. And a boundary protection film consisting of oxide and MoS2 is formed on the friction surface, thus improving the friction reduction and anti-wear performance of the grease.

Originality/value

This study can improve the anti-wear and friction-reduction performance of greases, which is of great importance in the field of industrial lubrication. The results of this paper are expected to be useful to researchers and academics of grease.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0350/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 June 2023

Meixian Zhang, Yiding Ou, Haibing Yuan, Junlin Pan and Lei Ma

The purpose of this paper is to examine the practicability of the self-designed ambient humidity controllable pin-disc/rolling multifunctional friction and wear test device and to…

Abstract

Purpose

The purpose of this paper is to examine the practicability of the self-designed ambient humidity controllable pin-disc/rolling multifunctional friction and wear test device and to evaluate the friction and wear characteristics of materials under diverse ambient humidity conditions in different contact forms.

Design/methodology/approach

The practicability of the self-designed multifunctional friction tester was examined by the friction and wear tests of materials under different ambient humidity conditions [65%RH, 98%RH (relative humidity)] in diverse contact forms (pin/disc and rolling). Meanwhile, the friction and wear properties of pin/disc samples also rolling samples were assessed from three aspects: average friction coefficient, wear mass and wear morphology.

Findings

The results prove that the self-designed multifunctional friction tester has practicability. Therefore, it can be used to simulate the friction and wear tests of materials under diverse ambient humidity conditions in different contact forms. Besides, it is evident that the wear damage of pin/disc and rolling samples are greatly improved under high ambient humidity conditions. And when other conditions are identical, the higher the ambient humidity, the smaller the average friction coefficient, wear mass and wear damage degree of pin/disc also rolling samples.

Originality/value

This paper offers a self-designed multifunctional friction and wear test device. And the tester not only can realize the control of test ambient humidity, but also achieve the wear test of pin/disc or rolling contact forms. The design and production of the tester can offer convenience for the research of tribology, and provide fundamental guidance for the study of materials under high humidity condition in diverse contact forms.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 July 2023

Hongxiao Li and Li Li

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Abstract

Purpose

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Design/methodology/approach

This study combines experimental testing and numerical simulation to investigate the influence of wheel profile wear coupled with the friction coefficient on the vehicle dynamic response.

Findings

For the test route in this paper, it is recommended to control the friction coefficient on straight sections between 0.25 and 0.3, and on curved sections between 0.2 and 0.3. This satisfies the required adhesion coefficient for normal train traction and braking, while also ensuring the straight running performance and curve negotiation performance of the vehicle.

Practical implications

Reasonable friction coefficient ranges are proposed for straight and curved track lines to improve the operational safety and economy of the vehicles. Moreover, this study can provide a theoretical basis and reference direction for developing anti-wear measures for rail vehicles operating on fixed routes.

Originality/value

Considering the wear characteristics of operating vehicles and the dynamic changes in the wear profile, this paper explores the adaptability of different degrees of wheel wear profiles to different friction coefficients. Based on the response characteristics of vehicle dynamics, reasonable lubrication recommendations are proposed for this operating vehicle.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 April 2024

Ziyan Lu, Feng Qiu, Hui Song and Xianguo Hu

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface…

Abstract

Purpose

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface, which severely limits their application as lubricant additives.

Design/methodology/approach

MoS2/C60 nanocomposites were prepared by synthesizing molybdenum disulfide (MoS2) nanosheets on the surface of hydrochloric acid-activated fullerenes (C60) by in situ hydrothermal method. The composition, structure and morphology of MoS2/C60 nanocomposites were characterized. Through the high-frequency reciprocating tribology test, its potential as a lubricant additive was evaluated.

Findings

MoS2/C60 nanocomposites that were prepared showed good dispersion in dioctyl sebacate (DOS). When 0.5 Wt.% MoS2/C60 was added, the friction reduction performance and wear resistance improved by 54.5% and 62.7%, respectively.

Originality/value

MoS2/C60 composite nanoparticles were prepared by in-situ formation of MoS2 nanosheets on the surface of C60 activated by HCl through hydrothermal method and were used as potential lubricating oil additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0321/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 May 2023

Mu’taz AlTarawneh and Salloom AlJuboori

Studies on this topic have shown the remarkable lubricating properties, viz. friction-reducing and anti-wear, of certain nanoparticles. This makes them potential candidates for…

Abstract

Purpose

Studies on this topic have shown the remarkable lubricating properties, viz. friction-reducing and anti-wear, of certain nanoparticles. This makes them potential candidates for replacing the lubrication additives currently used in automobile lubricants, especially because the latter is known to be pollutants and less efficient in some specific conditions. This has not gone unnoticed to professionals in the sector, including those commercializing these additives, the oil companies and the car industry, all of whom are following this burgeoning research area with keen interest. All of them are faced with the problem of providing lubricants that meet the needs of the technological evolution of engines while respecting ever-stricter environmental norms.

Design/methodology/approach

The impact of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles on the tribological properties of the SAE-40 pure diesel oil is studied in this paper. The two nanoparticles are not oxide or deteriorate with the base oil. The average size of CuO and ZnO nanoparticles is 40 and 20 nm, respectively. Nanoparticle concentrations of 0.1 Wt.%, 0.2 Wt.%, 0.3 Wt.%, 0.4 Wt.% and 0.5 Wt.% are tested using a pin-on-disk tribometer to evaluate their impact on friction and wear. The test is carried out at different loads and rotating speeds of 58.86 N and 300 rpm, 39.24 N and 500 rpm and 78.48 N and 900 rpm at room temperature, respectively.

Findings

The obtained results of the nanolubricants are compared with those of pure diesel oil in terms of % improvement in tribological properties. However, it is observed that an increase in the nanoparticle concentrations does not guarantee to enhance the tribological properties. Similarly, increasing the applied load and the rotating speed does not lead to improving the anti-friction and anti-wear properties. The results obtained revealed that the optimal improvements in the anti-friction and anti-wear properties of the pure oil are 69% and 77% when CuO nanoparticle concentrations of 0.3 Wt.% and the ZnO nanoparticle concentrations of 0.1 Wt.% are used, where the applied load and rotating speed are 39.24 N and 500 rpm, respectively. It has also been noticed that the CuO nanolubricants have a significant impact on the anti-friction property compared with ZnO nanolubricants.

Originality/value

All these nanoparticles have been the subject of detailed investigation in this research and many key issues have been tackled, such as the conditions leading to these properties, the lubrication mechanisms coming into play, the influence of parameters such as size, structure and morphology of the nanoparticles on their tribological properties/lubrication mechanisms and the interactions between the particles and the lubricant co-additives. To answer such questions, state-of-the-art characterization techniques are required, often in situ, and sometimes an extremely complex set up. Some of these can even visualize the behavior of a nanoparticle in real time during a tribological test. The research on this topic has given a good understanding of the way these nanoparticles behave, and we can now identify the key parameters to be adjusted when optimizing their lubrication properties.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2022-0234/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2024

Xiaoxuan Lin, Xiong Sang, Yuyan Zhu and Yichen Zhang

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate…

Abstract

Purpose

This paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate immersed in the lubricants.

Design/methodology/approach

Nano-AlN or nano-Al2O3 (0.1, 0.2, 0.3, 0.4 and 0.5 Wt.%) functional fluids were prepared. Their tribological properties were tested by an MRS-10A four-ball friction tester and a ball-on-plate configuration, and scanning electron microscope observed the worn surface of the plate.

Findings

An increase in nano-AlN and Al2O3 content enhances the extreme pressure and anti-wear performance of the lubricant. The best performance is achieved at 0.5 Wt.% of nano-AlN and 0.3 Wt.% of nano-Al2O3 with PB of 834 N and 883 N, a coefficient of friction (COF) of approximately 0.07 and 0.06, respectively. Furthermore, the inclusion of nano-AlN and nano-Al2O3 particles in the lubricant enhances its extreme pressure performance and reduces wear, leading to decreased wear spot depth. The lubricating effect of the nano-Al2O3 lubricant on the surface of the copper-steel composite plate is slightly superior to that of the nano-AlN lubricant, with a COF reaching 0.07. Both lubricants effectively fill and lubricate the holes on the surface of the copper-steel composite plate.

Originality/value

AlN and Al2O3 as water-based lubricants have excellent lubrication performance and can reduce the COF. It can provide some reference for the practical application of nano-water-based lubricants.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0255/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 August 2023

Xinyan Bian, Xiaoguang Han, Jiamei Luo, Chengdi Li and Mingxing Hao

The purpose of this study is to prolong the service life of the Al–Si alloy cylinder and achieve the objective of energy saving and emission reduction by the composite treatments.

Abstract

Purpose

The purpose of this study is to prolong the service life of the Al–Si alloy cylinder and achieve the objective of energy saving and emission reduction by the composite treatments.

Design/methodology/approach

Chemical etching + laser texturing + filled MoS2 composite treatment was applied to the friction surface of aluminum–silicon (Al–Si) alloy cylinder. The friction coefficient and wear loss were measured to characterize the tribology property of cylinders.

Findings

The composite-treated Al–Si alloy cylinder had the lowest friction coefficient and weight loss. The friction coefficient and weight loss of the composite treatment were approximately 27.08% and 54.17% lower than those of the untreated sample, respectively. The laser micro-textures control the release of solid lubricant to the interface of friction pairs slowly, which prolongs the service life of cylinders.

Originality/value

The synergistic effect of the chemical etching + laser texturing + filled MoS2 modified the tribology properties of Al–Si alloy cylinder. The chemical etching raised the silicon particles to bear the load, and laser micro-textures control the release of solid lubricant to improve the lubrication property.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2023

Yazhou Mao, Daqing Li, Lilin Li and Jingyang Zheng

This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing…

Abstract

Purpose

This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing were represented. It provides a design direction for solving the tribological problem of rotor-bearing system.

Design/methodology/approach

In this paper, the variation of surface texture parameters (e.g. texture diameter, d; area density, sp; and depth, hp) were analyzed based on finite difference method. The optimal surface texture parameters were obtained by designing orthogonal experiments, and the relationship between friction and wear properties and microstructure was studied via combining electron probe microanalyzer, scanning electron microscope, X-ray diffractometer and friction and wear testing machine.

Findings

Dimensionless film pressure P increased as the d increased, whereas P first increased and then decreased as the sp and hp increased, and the maximum P was got as sp = 15% and hp = 25 µm, respectively. The friction coefficient of textured surface with suitable parameters was effectively reduced and the textured surface with the best antifriction effect was 5#. Orthogonal experimental design analysis showed that the influence order of factors on friction coefficient was as follows: sp > sp × d > d > d × hp > hp > sp × hp and the friction coefficient first decreased and then increased as the sp, d and hp increased. In addition, the friction and wear mechanism of textured bearing were three body friction and abrasive wear as the matrix structure and hard phase were a single β phase and Mn5Si3, respectively. While the antifriction mechanism of textured surface was able to store abrasive particles and secondary hydrodynamic lubrication was formed.

Originality/value

The sample with reasonable texture parameter design can effectively reduce friction and wear of hydrodynamic journal bearing without reducing the service life, which can provide a reference for improving the lubrication performance and mechanical efficiency of rotor-bearing system.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 341