Search results

1 – 10 of 26
Open Access
Article
Publication date: 6 December 2022

Attilia Ruzzene, Mara Brumana and Tommaso Minola

Following the lead of neighboring fields such as strategy and organization studies, entrepreneurship is gradually joining in the adoption of a practice perspective…

Abstract

Purpose

Following the lead of neighboring fields such as strategy and organization studies, entrepreneurship is gradually joining in the adoption of a practice perspective. Entrepreneurship as practice (EaP) is thus a nascent domain of investigation where the methodological debate is still unsettled and very fluid. In this paper, the authors contribute to this debate with a focus on family entrepreneurship.

Design/methodology/approach

The authors develop a conceptual paper to discuss what it entails to look at family entrepreneurship through a practice lens and why it is fruitful. Moreover, the authors propose a research strategy novel to the field through which such investigation can be pursued, namely process tracing, and examine its inferential logic.

Findings

Process tracing is a strategy of data analysis underpinned by an ontology of causal mechanisms. The authors argue that it complements other practice methods by inferring social mechanisms from empirical evidence and thereby establishing a connection between praxis, practices and practitioners.

Practical implications

Process tracing helps the articulation of an “integrated model” of practice that relates praxis, practices and practitioners to the outcome they jointly produce. By enabling the assessment of impact, process tracing helps providing prima facie evidentiary grounds for policy action and intervention.

Originality/value

Process tracing affinity with the practice perspective has been so far acknowledged only to a limited extent in the social sciences, and it is, in fact, a novel research strategy for the family entrepreneurship field.

Details

International Journal of Entrepreneurial Behavior & Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2554

Keywords

Open Access
Article
Publication date: 19 April 2024

Jason Martin, Per-Erik Ellström, Andreas Wallo and Mattias Elg

This paper aims to further our understanding of policy–practice gaps in organizations from an organizational learning perspective. The authors conceptualize and analyze…

Abstract

Purpose

This paper aims to further our understanding of policy–practice gaps in organizations from an organizational learning perspective. The authors conceptualize and analyze policy–practice gaps in terms of what they label the dual challenge of organizational learning, i.e. the organizational tasks of both adapting ongoing practices to prescribed policy demands and adapting the policy itself to the needs of practice. Specifically, the authors address how this dual challenge can be understood in terms of organizational learning and how an organization can be managed to successfully resolve the dual learning challenge and, thereby, bridge policy–practice gaps in organizations.

Design/methodology/approach

This paper draws on existing literature to explore the gap between policy and practice. Through a synthesis of theories and an illustrative practical example, this paper highlights key conceptual underpinnings.

Findings

In the analysis of the dual challenge of organizational learning, this study provides a conceptual framework that emphasizes the important role of tensions and contradictions between policy and practice and their role as drivers of organizational learning. To bridge policy–practice gaps in organizations, this paper proposes five key principles that aim to resolve the dual challenge and accommodate both deployment and discovery in organizations.

Research limitations/implications

Because this is a conceptual study, empirical research is called for to explore further and test the findings and conclusions of the study. Several avenues of possible future research are proposed.

Originality/value

This paper primarily contributes by introducing and elaborating on a conceptual framework that offers novel perspectives on the dual challenges of facilitating both discovery and deployment processes within organizations.

Details

The Learning Organization, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-6474

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 16 September 2022

Chems Eddine Berrehail and Amar Makhlouf

The objective of this work is to study the periodic solutions for a class of sixth-order autonomous ordinary differential equations x…

Abstract

Purpose

The objective of this work is to study the periodic solutions for a class of sixth-order autonomous ordinary differential equations x(6)+(1+p2+q2)x… .+(p2+q2+p2q2)x¨+p2q2x=εF(x,ẋ,x¨,x,x… .,x(5)), where p and q are rational numbers different from 1, 0, −1 and pq, ε is a small enough parameter and FC2 is a nonlinear autonomous function.

Design/methodology/approach

The authors shall use the averaging theory to study the periodic solutions for a class of perturbed sixth-order autonomous differential equations (DEs). The averaging theory is a classical tool for the study of the dynamics of nonlinear differential systems with periodic forcing. The averaging theory has a long history that begins with the classical work of Lagrange and Laplace. The averaging theory is used to the study of periodic solutions for second and higher order DEs.

Findings

All the main results for the periodic solutions for a class of perturbed sixth-order autonomous DEs are presenting in the Theorem 1. The authors present some applications to illustrate the main results.

Originality/value

The authors studied Equation 1 which depends explicitly on the independent variable t. Here, the authors studied the autonomous case using a different approach.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 7 October 2021

Enas M.F. El Houby

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for…

2572

Abstract

Purpose

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for treatment in time. Effective automated methods for the detection of DR and the classification of its severity stage are necessary to reduce the burden on ophthalmologists and diagnostic contradictions among manual readers.

Design/methodology/approach

In this research, convolutional neural network (CNN) was used based on colored retinal fundus images for the detection of DR and classification of its stages. CNN can recognize sophisticated features on the retina and provides an automatic diagnosis. The pre-trained VGG-16 CNN model was applied using a transfer learning (TL) approach to utilize the already learned parameters in the detection.

Findings

By conducting different experiments set up with different severity groupings, the achieved results are promising. The best-achieved accuracies for 2-class, 3-class, 4-class and 5-class classifications are 86.5, 80.5, 63.5 and 73.7, respectively.

Originality/value

In this research, VGG-16 was used to detect and classify DR stages using the TL approach. Different combinations of classes were used in the classification of DR severity stages to illustrate the ability of the model to differentiate between the classes and verify the effect of these changes on the performance of the model.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 14 December 2023

Fouad Al Bayaty, Mazen M. Jamil Al-Obaidi, Anissa Lokman, Suhaila Yazid and Omar Emad Ibrahim

This study examines the osteoconductive and healing capabilities of locally implanted synthetic hydroxyapatite (sHAp) derived from eggshells in the central incisor sockets of rats.

Abstract

Purpose

This study examines the osteoconductive and healing capabilities of locally implanted synthetic hydroxyapatite (sHAp) derived from eggshells in the central incisor sockets of rats.

Design/methodology/approach

Toxicity experiments were conducted in vitro and in vivo, to testify the safety dosage of sHAp. Around 24 mature male Sprague–Dawley (SD) rats had their upper central incisors extracted. The rats were placed into three groups of eight rats each: Group 1: the sockets of extracted central incisors were left unfilled (control), Group 2: filled up with commercially available hydroxyapatite (HAp) and Group 3: implanted with sHAp locally retrieved from eggshells. After extraction, four rats from each group were sacrificed at 2nd and 4th weeks. Maxillary tissue sections were obtained and stained with hematoxylin and eosin (H&E) and Masson’s trichome (MT) staining. Anti-osteocalcin (OCN) and proliferating cell nuclear antigen (PCNA) were used primary antibodies for immunohistochemistry (IHC) special labeling.

Findings

The results showed that the locally implanted sHAp was non-toxic and safe in cell lines (human osteoblast and fibroblast) and animals. Histological analysis of H&E, MT and IHC showed that the sockets treated with locally implanted sHAp from eggshells were filled with new bone tissue of comparable thickness to other groups.

Originality/value

This unique technique uses locally implanted eggshell-derived sHAp with osteoconductive characteristics. In an in vivo model, sHAps increased OCN and PCNA expression to improve bone repair.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 11 January 2024

Adewale Allen Sokan-Adeaga, Godson R.E.E. Ana, Abel Olajide Olorunnisola, Micheal Ayodeji Sokan-Adeaga, Hridoy Roy, Md Sumon Reza and Md. Shahinoor Islam

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Abstract

Purpose

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Design/methodology/approach

The milled CP was divided into three treatment groups in a small-scale flask experiment where each 20 g CP was subjected to two-stage hydrolysis. Different amount of water was added to the fermentation process of CP. The fermented samples were collected every 24 h for various analyses.

Findings

The results of the fermentation revealed that the highest ethanol productivity and fermentation efficiency was obtained at 17.38 ± 0.30% and 0.139 ± 0.003 gL−1 h−1. The study affirmed that ethanol production was increased for the addition of water up to 35% for the CP hydrolysate process.

Practical implications

The finding of this study demonstrates that S. cerevisiae is the key player in industrial ethanol production among a variety of yeasts that produce ethanol through sugar fermentation. In order to design truly sustainable processes, it should be expanded to include a thorough analysis and the gradual scaling-up of this process to an industrial level.

Originality/value

This paper is an original research work dealing with bioethanol production from CP using S. cerevisiae microbe.

Highlights

  1. Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

  2. Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

  3. Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

  4. Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 23 March 2023

María Belén Prados-Peña, George Pavlidis and Ana García-López

This study aims to analyze the impact of Artificial Intelligence (AI) and Machine Learning (ML) on heritage conservation and preservation, and to identify relevant future research…

Abstract

Purpose

This study aims to analyze the impact of Artificial Intelligence (AI) and Machine Learning (ML) on heritage conservation and preservation, and to identify relevant future research trends, by applying scientometrics.

Design/methodology/approach

A total of 1,646 articles, published between 1985 and 2021, concerning research on the application of ML and AI in cultural heritage were collected from the Scopus database and analyzed using bibliometric methodologies.

Findings

The findings of this study have shown that although there is a very important increase in academic literature in relation to AI and ML, publications that specifically deal with these issues in relation to cultural heritage and its conservation and preservation are significantly limited.

Originality/value

This study enriches the academic outline by highlighting the limited literature in this context and therefore the need to advance the study of AI and ML as key elements that support heritage researchers and practitioners in conservation and preservation work.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Access

Only content I have access to

Year

Content type

Earlycite article (26)
1 – 10 of 26