Search results

1 – 10 of 73
Article
Publication date: 15 February 2023

Mehmet Necati Cizrelioğullari, Tapdig Veyran Imanov, Tugrul Gunay and Aliyev Shaiq Amir

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this…

Abstract

Purpose

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this study is to investigate the total air temperature (TAT) anomaly observed during the cruise level and its impact on engine parameter variations.

Design/methodology/approach

Empirical methodology is used in this study, and it is based on measurements and observations of anomalous phenomena on the tropopause. The primary data were taken from the Boeing 747-8F's enhanced flight data recorder, which refers to the quantitative method, while the qualitative method is based on a literature review and interviews. The GEnx Integrated Vehicle Health Management system was used for the study's evaluation of engine performance to support the complete range of operational priorities throughout the entire engine lifecycle.

Findings

The study's findings indicate that TAT and SAT anomalies, which occur between 270- and 320-feet flight level, have a substantial impact on aircraft performance at cruise altitude and, as a result, on engine parameters, specifically an increase in fuel consumption and engine exhaust gas temperature values. The TAT and Ram Rise anomalies were the focus of the atmospheric deviations, which were assessed as major departures from the International Civil Aviation Organizations–defined International Standard Atmosphere, which is obvious on a positive tendency and so goes against the norms.

Research limitations/implications

Necessary fixed flight parameters gathered from the aircraft's enhanced airborne flight recorder (EAFR) via Aeronautical Radio Incorporated (ARINC) 664 Part 7 at a certain velocity and altitude interfacing with the diagnostic program direct parameter display (DPD), allow for analysis of aircraft performance in a real-time frame. Thus, processed data transmits to the ground maintenance infrastructure for future evaluation and for proper maintenance solutions.

Originality/value

A real-time analysis of aircraft performance is possible using the diagnostic program DPD in conjunction with necessary fixed flight parameters obtained from the aircraft's EAFR via ARINC 664 Part 7 at a specific speed and altitude. Thus, processed data is transmitted to the ground infrastructure for maintenance to be evaluated in the future and to find the best maintenance fixes.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 September 2024

Wenqi Zhang, Zhenbao Liu, Xiao Wang and Luyao Wang

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the…

Abstract

Purpose

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the stability of the aforementioned aircraft.

Design/methodology/approach

This paper uses a linear sliding mode control algorithm to analyse the stability of the UAV's attitude in a level flight state. In addition, a wind-resistant control algorithm based on the estimation of wind disturbance with a radial basis function neural network is proposed. Through the modelling of the flying wing layout UAV, the stability characteristics of a sample UAV are analysed based on the simulation data. The stability characteristics of the sample UAV are analysed based on the simulation data.

Findings

The simulation results indicate that the UAV with a flying wing layout has a short fuselage, no tail with a horizontal stabilising surface and the aerodynamic focus of the fuselage and the centre of gravity is nearby, which is indicative of longitudinal static instability. In addition, the absence of a drogue tail and the reliance on ailerons and a swept-back angle for stability result in a lack of stability in the transverse direction, whereas the presence of stability in the transverse direction is observed.

Originality/value

The analysis of the stability characteristics of the sample aircraft provides the foundation for the subsequent establishment of the control model for the flying wing layout UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 July 2024

Min Zhao, Wei He, Xiuyu He, Liang Zhang and Hongxue Zhao

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the…

Abstract

Purpose

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the flapping wings are crucial for the flight performance. The aim of this paper is to study the effects of different wings on aerodynamic performance.

Design/methodology/approach

Inspired by the wings structure of birds, the authors design four cambered wings to analyze the effect of airfoils on the FWAVs aerodynamic performance. The authors design the motor-driven mechanism of flapping wings, and realize the control of flapping frequency. Combined with the wind tunnel equipment, the authors build the FWAVs force test platform to test the static and dynamic aerodynamic performance of different flapping wings under the state variables of flapping frequency, wind speed and inclined angle.

Findings

The results show that the aerodynamic performance of flapping wing with a camber of 20 mm is the best. Compared with flat wing, the average lift can be improved by 59.5%.

Originality/value

Different from the traditional flat wing design of FWAVs, different cambered flapping wings are given in this paper. The influence of airfoils on aerodynamic performance of FWAVs is analyzed and the optimal flapping wing is obtained.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 January 2024

Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R. and Boomadevi P.

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental…

Abstract

Purpose

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.

Design/methodology/approach

Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.

Findings

From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.

Originality/value

The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 16 July 2024

Ruan du Rand, Kevin Jamison and Barbara Huyssen

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while…

Abstract

Purpose

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while adhering to onboard system constraints and fitment specifications.

Design/methodology/approach

Initial geometric layout determination used empirical methods. Performance approximation on the aircraft with added fairings and stabilising fin configurations was conducted using a panel code. Verification of loads was done using a full steady Reynolds-averaged Navier–Stokes solver, validated against published wind tunnel test data. Acceptable load envelope for the aircraft pylon was defined using two already-certified stores with known flight envelopes.

Findings

Re-lofting the pod’s geometry enabled meeting all geometric and pylon load constraints. However, due to the pod's large size, re-lofting alone was not adequate to respect aircraft/pylon load limitations. A flight restriction was imposed on the aircraft’s roll rate to reduce yaw and roll moments within allowable limits.

Practical implications

The geometry of an electronics pod was redesigned to maximise the permissible flight envelope on its carriage aircraft while respecting the safe carriage load limits determined for its store pylon. Aircraft carriage load constraints must be determined upfront when considering the design of fast-jet electronic pods.

Originality/value

A process for determining the unknown load constraints of a carriage aircraft by analogy is presented, along with the process of tailoring the geometry of an electronics pod to respect aerodynamic load and geometric constraints.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 July 2024

Zhiyu Li, Hongguang Li, Yang Liu, Lingyun Jin and Congqing Wang

Autonomous flight of unmanned aerial vehicles (UAVs) in global position system (GPS)-denied environments has become an increasing research hotspot. This paper aims to realize the…

Abstract

Purpose

Autonomous flight of unmanned aerial vehicles (UAVs) in global position system (GPS)-denied environments has become an increasing research hotspot. This paper aims to realize the indoor fixed-point hovering control and autonomous flight for UAVs based on visual inertial simultaneous localization and mapping (SLAM) and sensor fusion algorithm based on extended Kalman filter.

Design/methodology/approach

The fundamental of the proposed method is using visual inertial SLAM to estimate the position information of the UAV and position-speed double-loop controller to control the UAV. The motion and observation models of the UAV and the fusion algorithm are given. Finally, experiments are performed to test the proposed algorithms.

Findings

A position-speed double-loop controller is proposed, by fusing the position information obtained by visual inertial SLAM with the data of airborne sensors. The experiment results of the indoor fixed-points hovering show that UAV flight control can be realized based on visual inertial SLAM in the absence of GPS.

Originality/value

A position-speed double-loop controller for UAV is designed and tested, which provides a more stable position estimation and enabled UAV to fly autonomously and hover in GPS-denied environment.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 February 2024

Taiwo Akinlo and Busayo Olubunmi Aderounmu

This study aims to provide an empirical investigation into rising capital flight and the role of institutional quality to mitigate its effect on the real sector in sub-Saharan…

Abstract

Purpose

This study aims to provide an empirical investigation into rising capital flight and the role of institutional quality to mitigate its effect on the real sector in sub-Saharan Africa (SSA).

Design/methodology/approach

The study uses the system generalized method of moments and uses data spanning from 1989 to 2020 from 26 SSA countries.

Findings

The findings show that capital flight has no direct impact on the real sector while institutional quality adversely impacted the agricultural and industrial sectors. The study also found that institutional quality is unable to mitigate the effect of capital flight on the industrial sector.

Originality/value

This study investigates if institutional quality mitigates the impact of capital flight on the real sector proxied by industrial value-added and agriculture value-added.

Details

Journal of Money Laundering Control, vol. 27 no. 5
Type: Research Article
ISSN: 1368-5201

Keywords

Open Access
Article
Publication date: 12 August 2024

Sławomir Szrama

This study aims to present the concept of aircraft turbofan engine health status prediction with artificial neural network (ANN) pattern recognition but augmented with automated…

Abstract

Purpose

This study aims to present the concept of aircraft turbofan engine health status prediction with artificial neural network (ANN) pattern recognition but augmented with automated features engineering (AFE).

Design/methodology/approach

The main concept of engine health status prediction was based on three case studies and a validation process. The first two were performed on the engine health status parameters, namely, performance margin and specific fuel consumption margin. The third one was generated and created for the engine performance and safety data, specifically created for the final test. The final validation of the neural network pattern recognition was the validation of the proposed neural network architecture in comparison to the machine learning classification algorithms. All studies were conducted for ANN, which was a two-layer feedforward network architecture with pattern recognition. All case studies and tests were performed for both simple pattern recognition network and network augmented with automated feature engineering (AFE).

Findings

The greatest achievement of this elaboration is the presentation of how on the basis of the real-life engine operational data, the entire process of engine status prediction might be conducted with the application of the neural network pattern recognition process augmented with AFE.

Practical implications

This research could be implemented into the engine maintenance strategy and planning. Engine health status prediction based on ANN augmented with AFE is an extremely strong tool in aircraft accident and incident prevention.

Originality/value

Although turbofan engine health status prediction with ANN is not a novel approach, what is absolutely worth emphasizing is the fact that contrary to other publications this research was based on genuine, real engine performance operational data as well as AFE methodology, which makes the entire research very reliable. This is also the reason the prediction results reflect the effect of the real engine wear and deterioration process.

Article
Publication date: 1 May 2024

Emanuela Caracuzzo, Andrea Caputo, Antonino Callea, Claudio Giovanni Cortese and Flavio Urbini

Playful work design (PWD) is a set of proactive strategies implementing fun and self-challenge at work to actively create better work conditions. Following the job…

Abstract

Purpose

Playful work design (PWD) is a set of proactive strategies implementing fun and self-challenge at work to actively create better work conditions. Following the job demands-resources theory, this study aims to investigate the effects of PWD’s dimensions – i.e. “designing fun” and “designing competition” – on task and contextual performance (Study 1) and on the dimensions of organizational citizenship behaviors (OCBs) – i.e. altruism, conscientiousness and civic virtue (Study 2). Furthermore, the present research investigates the mediating role of work engagement (WE) for both studies.

Design/methodology/approach

Two samples of 339 and 141 Italian workers participated by filling in a self-report questionnaire. Measuring models and hypotheses have been tested by structural equation models.

Findings

Results suggest that WE partially mediates the relationship of the “designing competition” subdimension of PWD with task and contextual performance (Study 1) and with conscientiousness and civic virtue of OCBs, while “designing fun” shows a positive direct relationship only with altruism (Study 2).

Originality/value

This paper contributes to expanding knowledge about PWD’s effectiveness in facilitating performance and positive behaviors. Furthermore, it disentangles the different effects of PWD’s dimensions on performance. In light of the results, both employees and managers should be aware of the beneficial consequences of introducing fun and self-competitiveness when completing their own work activities.

Article
Publication date: 19 July 2024

Bin Li, Shoukun Wang, Jinge Si, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang and Zhi Liu

Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random…

Abstract

Purpose

Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random disturbances, proposing a dynamic target tracking framework for UGVs based on target state estimation, trajectory prediction, and UGV control.

Design/methodology/approach

To mitigate the adverse effects of noise contamination in target detection, the authors use the extended Kalman filter (EKF) to improve the accuracy of locating unmanned aerial vehicles (UAVs). Furthermore, a robust motion prediction algorithm based on polynomial fitting is developed to reduce the impact of trajectory jitter caused by crosswinds, enhancing the stability of drone trajectory prediction. Regarding UGV control, a dynamic vehicle model featuring independent front and rear wheel steering is derived. Additionally, a linear time-varying model predictive control algorithm is proposed to minimize tracking errors for the UGV.

Findings

To validate the feasibility of the framework, the algorithms were deployed on the designed UGV. Experimental results demonstrate the effectiveness of the proposed dynamic tracking algorithm of UGV under random disturbances.

Originality/value

This paper proposes a tracking framework of UGV based on target state estimation, trajectory prediction and UGV predictive control, enabling the system to achieve dynamic tracking to the UAV under multiple disturbance conditions.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 73