Search results

1 – 10 of over 1000
Article
Publication date: 6 October 2023

Edward Ayebeng Botchway, Kofi Agyekum, Judith Amudjie and Hayford Pittri

This study aims to explore occupants’ perceived importance and satisfaction with high-rise students’ housing facilities’ fire safety considerations (FSCs). The specific objectives…

Abstract

Purpose

This study aims to explore occupants’ perceived importance and satisfaction with high-rise students’ housing facilities’ fire safety considerations (FSCs). The specific objectives are to explore the FSCs for high-rise students’ housing facilities and assess the level of importance and satisfaction with the FSCs provided in high-rise students’ housing facilities in controlling fire outbreaks.

Design/methodology/approach

The study uses an exploratory sequential design with an initial qualitative phase followed by a quantitative data collection phase. Twenty FSCs were identified through the qualitative phase via semistructured interviews. Their importance and satisfaction were revealed through survey questionnaires with 168 respondents who stayed in or were involved in the operation of high-rise students’ housing facilities. Data from the qualitative phase were analyzed thematically, and those obtained from the quantitative phase were analyzed descriptively and inferentially.

Findings

The study’s findings revealed that all the 20 FSCs identified via the qualitative phase and confirmed through the quantitative phase were perceived to be very important in fighting fires in high-rise students’ housing facilities. However, only 9 out of the 20 FSCs received some satisfaction among the respondents in fighting fires in the facilities.

Originality/value

This study offers insight into a rare study area, especially in sub-Saharan Africa. In addition, it grants insight into the occupants’ perspective regarding which FSCs they consider essential and their level of satisfaction with such FSCs in fighting fires in high-rise students’ housing facilities.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 5 August 2024

Mohammad A. Hassanain, Haitham Sawalha, Mohammad B. Hamida, Adel Alshibani and Mohammad Sharif Zami

This paper explores the relevant fire code requirements and outlines the development of an evaluation tool based on these codes to evaluate fire safety measures in dining…

Abstract

Purpose

This paper explores the relevant fire code requirements and outlines the development of an evaluation tool based on these codes to evaluate fire safety measures in dining properties.

Design/methodology/approach

Existing literature was examined to identify the combustible materials, fire causes and factors making these properties prone to fire incidents. An evaluation method, based on code regulations, for ensuring fire safety in dining properties was then developed and tested on a specific dining facility to validate its practicality.

Findings

Forty requirements, grouped into seven categories, were identified for ensuring fire safety in dining properties. The case study exposed multiple violations of fire safety, leading to corrective measures for enhancing the fire safety status of the building.

Practical implications

This study introduced a methodical approach for raising awareness, among property managers of dining properties, about fire incidences and their consequences. It presents an evaluation tool for assessing the compliance level with fire codes and standards.

Originality/value

Dining properties are facilities that offer both dine-in and take-out food services. Given the increasing number of fire incidents in dining properties worldwide, there is a substantial demand for a process to audit the adherence to fire safety codes in these properties. This study presents a systematic approach to increase public knowledge of fire events and their effects in dining properties.

Details

International Journal of Emergency Services, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2047-0894

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 24 October 2023

Mohammad A. Hassanain and Zayed A. Albugami

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role…

Abstract

Purpose

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role emerged in importance as being a hub for improving and customizing quality of life experiences of the public. This research presents a code-based risk assessment tool for evaluating fire safety measures that can be adapted in the context of community centers. It also provides an exemplary case study to demonstrate its application.

Design/methodology/approach

The study identified the factors that render community centers as a high-risk type of facilities in fire events. Various fire codes and standards were reviewed to describe the relevant fire safety measures. A code-based fire risk assessment tool was developed and implemented, through a case study. A set of recommendations were developed to improve the fire safety conditions of the case study facility.

Findings

Several violations to fire safety were identified in the case study building. The findings led to identifying a set of recommendations to improve its fire safety conditions.

Practical implications

This research introduced a systematic approach to raise awareness about fire incidences and consequences in community centers, and provides facilities managers with a tool, to assess compliance based on international fire code requirements.

Originality/value

In fire events, community centers are considered as high-risk facilities that may lead to significant losses of human lives and damages to assets. It is significant to study the causes of fire, for ensuring effective prevention and safe operations.

Details

International Journal of Emergency Services, vol. 13 no. 1
Type: Research Article
ISSN: 2047-0894

Keywords

Article
Publication date: 12 January 2024

Jingqi Zhang, Shaohua Jiang and Xiaomin Qi

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the…

Abstract

Purpose

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the management level of fire evacuation site. Make up for the difficulties of BIM technology in effectively connecting building information and fire data.

Design/methodology/approach

First, this paper establishes a fire model and an evacuation model based on BIM information. Then, the safety index (SI) is introduced as a comprehensive index, and the IRI is established by integrating the SI function to evaluate the safety of evacuation routes. Based on these two indices, the IRI-based fire evacuation model is established.

Findings

This study offers an Improved Risk Index (IRI)-based fire evacuation model, which may achieve effective evacuation in fire scenes. And the model is verified by taking the fire evacuation of a shopping center building as an example.

Originality/value

This paper proposes a fire evacuation principle based on IRI, so that the relevant personnel can comprehensively consider the fire factors and evacuation factors to achieve the optimization of building design, thereby improving the fire safety of buildings.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 November 2023

Mark Pim-Wusu, Eric Kwame Simpeh and Jeremiah N-Nanajeri Simberi

Fire is the fundamental element of most people’s lives, and when not controlled, the same fire can lead to several catastrophes in homes, offices, schools, lives and other public…

Abstract

Purpose

Fire is the fundamental element of most people’s lives, and when not controlled, the same fire can lead to several catastrophes in homes, offices, schools, lives and other public places with severe repercussions. Hence, this study aims to examine the adequacy and extent of the application of fire suppression systems in residential and commercial property in Ghana.

Design/methodology/approach

This study adopts a sequential mixed-mode design comprising quantitative and qualitative research strategies to analyse factors to produce findings. The target population for this study includes shop occupiers, end users of office buildings, and residents in the Accra Central of Ghana. Systematic random sampling was used for the quantitative research, and a sample size of 385 was obtained using a multi-stage and cluster sampling method. A structured survey and semi-structured interviews were used to collect the primary data. The quantitative data were analysed using descriptive and inferential statistics, whereas the qualitative data were analysed using content analysis.

Findings

From an empirical literature review and the analysis, the three main factors contributing to fire breakouts are equipment malfunction, improper use of heat sources and human mistakes. According to the respondents, fire suppression systems were also inadequate, as most of the suppression systems prescribed in the building code were unavailable. Regarding the ability to manually operate fire suppression systems, most property occupiers stated that they are generally unaware of these suppression systems.

Practical implications

This study will aid policymakers in developing interventions for fire safety enforcement by ensuring that fire safety regulations are consistently followed by design team members and property developers, resulting in a positive effect on public building structures performing their required functions. It is also critical to provide end users with education and training on how to operate the fire suppression system as well as effective handling of firefighting installations in the event of a fire.

Originality/value

The findings of this investigation contribute to knowledge and comprehension of the effect of fire suppression systems on building users and may serve as a precursor to the development of a “As Built” certification system for ascertaining the adequacy of fire suppression systems for new and existing residential and commercial property.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 8 November 2023

Marcus Achenbach and Guido Morgenthal

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of…

Abstract

Purpose

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of safety, which is obtained by this approach, is not known. On the other hand, performance-based methods are more accepted, but require a target reliability as performance criterion. Hence, there is a need for calibration of the performance-based methods using the results of the “traditional” descriptive approach.

Design/methodology/approach

The calibration is performed for a single span concrete slab, where the axis distance of the reinforcement is chosen according to Eurocode 2 for a defined fire rating. A “standard” compartment is selected to cover typical fields of application. The opening factor is considered as parameter to obtain the maximum peak temperatures in the compartment. A Monte Carlo simulation, in combination with a response surface method, is set up to calculate the probabilities of failure.

Findings

The results indicate that the calculated reliability index for a standard is within the range, which has been used for the derivation of safety and combination factors in the Eurocodes. It can be observed that members designed for a fire rating R90 have a significant increase in the structural safety for natural fires compared to a design for a fire rating R30.

Originality/value

The level of safety, which is obtained by a design based on tabulated values, is quantified for concrete slabs. The results are a necessary input for the calibration of performance-based methods and could stimulate discussions among scientists and building authorities.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 July 2023

Ying Lu, Yunxuan Deng and Shuqi Sun

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian…

Abstract

Purpose

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian psychology impact the effectiveness of an evacuation during a metro fire. Prior research on emergency evacuation has overlooked the complexity of metro stations and failed to adequately consider the physical heterogeneity of stations and pedestrian psychology. Therefore, this study aims to develop a comprehensive evacuation optimization strategy for metro stations by applying the concept of design for safety (DFS) to an emergency evacuation. This approach offers novel insights into the management of complex systems in metro stations during emergencies.

Design/methodology/approach

Physical and social factors affecting evacuations are identified. Moreover, the social force model (SFM) is modified by combining the fire dynamics model (FDM) and considering pedestrians' impatience and panic psychology. Based on the Nanjing South Metro Station, a multiagent-based simulation (MABS) model is developed. Finally, based on DFS, optimization strategies for metro stations are suggested.

Findings

The most effective evacuation occurs when the width of the stairs is 3 meters and the transfer corridor is 14 meters. Additionally, a luggage disposal area should be set up. The exit strategy of the fewest evacuees is better than the nearest-exit strategy, and the staff in the metro station should guide pedestrians correctly.

Originality/value

Previous studies rarely consider metro stations as sociotechnical systems or apply DFS to proactively reduce evacuation risks. This study provides a new perspective on the evacuation framework of metro stations, which can guide the designers and managers of metro stations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 25 June 2024

Amir Haj-Bolouri, Jesse Katende and Matti Rossi

The reemergence of immersive virtual technology (IVR) provides both opportunities and challenges for workplace learning (WPL). The purpose of this study is to explore and develop…

Abstract

Purpose

The reemergence of immersive virtual technology (IVR) provides both opportunities and challenges for workplace learning (WPL). The purpose of this study is to explore and develop knowledge about how gamification influences the WPL experience by addressing two research questions: RQ1. What characterizes a gamified immersive safety training experience with IVR technology? and RQ2. How does gamified immersive safety training with IVR technology impact the WPL experience?

Design/methodology/approach

The study adopted a mixed methods approach by combining a systematic literature review with a case study on an empirical project about immersive fire safety training for train operators that are used at the Swedish train operating company SJ. The case study included data from semistructured interviews, Web survey and observation studies. The data was analyzed in two stages combining inductive and deductive data analysis for identifying themes and categories.

Findings

The findings of the study are twofold: (1) themes that conceptualize the gamified immersive safety training experience based on outputs from both the literature review and the first round of data analysis; and (2) a framework with three overarching categories that are mapped with the identified themes, and which were deduced throughout the second round of data analysis.

Originality/value

The originality of the findings stresses the implications of how a body of knowledge that synthesizes gamification concepts with immersive safety training, can inform the design of WPL experiences that are facilitated with IVR technology. As such, the implications of the findings are targeted toward both the advancement of the IVR discourse in the WPL field, but also toward practical considerations for design of immersive learning experiences that enrich WPL practices and culture.

Details

Journal of Workplace Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-5626

Keywords

Article
Publication date: 18 August 2023

Deanna Craig and M.Z. Naser

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply…

Abstract

Purpose

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.

Design/methodology/approach

This primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.

Findings

A comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.

Originality/value

In one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 1000