Search results

1 – 10 of 23
Article
Publication date: 28 October 2014

Z.X. Yuan and L. Chen

The purpose of this paper is to study the thermal and flow characteristics of a single annually finned-tube condenser. The velocity and the temperature field inside the fin…

Abstract

Purpose

The purpose of this paper is to study the thermal and flow characteristics of a single annually finned-tube condenser. The velocity and the temperature field inside the fin channel are revealed. Changes of the heat transfer and the flow resistance for typical fin configurations are analyzed. The optimal combinations of the fin dimension in terms of the enhancement of heat transfer are suggested.

Design/methodology/approach

The problem has been numerically investigated with the FLUENT software. K-ɛ model is applied in the solution of the turbulent cases. The local and the average feature of the thermal performance and the friction factor are determined. Furthermore, the effect of the fin spacing, the fin height, and the fin thickness on the heat transfer and the flow resistance are verified.

Findings

The numerical results reveal that the fin spacing is the most influential factor of all fin dimensions not only to the heat transfer but also to the flow resistance. Both the heat transfer and the flow resistance are compared with those related data available in the public literature. On the other hand, the fin height and the fin thickness affect the heat transfer of the condenser in a much less significant way in comparison to that of the fin spacing.

Originality/value

This paper provides some meaningful information of the fin-dimensional effect on the heat transfer and the flow resistance for a single finned tube condenser. For such kind of heat exchanger, the heat transfer coefficient, the friction factor, and the heat transfer amount per unit length tube are all important to describe the performance feature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1986

New four‐frequency tube inspection system. Hocking NDT has introduced Phasec D8, a new four channel multi‐frequency non‐destructive test system for the internal inspection of heat…

Abstract

New four‐frequency tube inspection system. Hocking NDT has introduced Phasec D8, a new four channel multi‐frequency non‐destructive test system for the internal inspection of heat exchanger tubing in power stations, air conditioners and industrial processes.

Details

Anti-Corrosion Methods and Materials, vol. 33 no. 2
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 September 2009

S. Jayavel and Shaligram Tiwari

The purpose of this paper is to develop an indigenous three‐dimensional computational code and apply it to compare flow and heat transfer characteristics for inline and staggered…

1158

Abstract

Purpose

The purpose of this paper is to develop an indigenous three‐dimensional computational code and apply it to compare flow and heat transfer characteristics for inline and staggered arrangement of circular tubes in a tube bundle.

Design/methodology/approach

A finite‐volume based computational code is developed to solve the momentum and energy equations for flow through a three‐dimensional rectangular channel and past built‐in tube bundles having inline and staggered arrangement. The approach is based on SIMPLE algorithm. The basic conservation equations of mass, momentum and energy are solved over a body‐fitting grid on the physical domain to obtain the flow and temperature fields.

Findings

Heat transfer and pressure drop are compared for inline and staggered tube arrangements in a tube bundle over range of Reynolds numbers 300 ≤ Re ≤ 800. Results are validated suitably against those available in literature.

Research implications

Tube‐fin heat exchangers with continuous fins on a tube array are commonly used in air‐conditioning industry and in air‐cooled condensers of power plants. The flow structure within the finned tube bank is complex due to the presence of a circular tube, which causes flow acceleration over the fin surface and flow separation on the back side of the tube resulting in low velocity wake region. The present study provides a better understanding of flow behavior and heat transfer for inline and staggered arrangement of tube bundles in tube‐fin heat exchangers at different Reynolds numbers.

Originality/value

A numerical code based on finite volume method has been developed and used for computations to predict heat transfer and pressure drop characteristics for flow past inline and staggered arrangement of circular tubes. Predictions are made from the computed results about suitability of staggered/inline tube arrangements in a given range of Reynolds number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 September 2013

Jules Voguelin Simo Tala, Serge Russeil, Daniel Bougeard and Jean-Luc Harion

In finned-tube heat exchangers, the array of tubes generates three-dimensional vortices at fin-tube junctions. Theses vortices known as horseshoe vortex (HSV) system are…

Abstract

Purpose

In finned-tube heat exchangers, the array of tubes generates three-dimensional vortices at fin-tube junctions. Theses vortices known as horseshoe vortex (HSV) system are responsible of flow mixing and heat transfer increase. The purpose of this paper is to focus on the effect of the fin spacing on the formation, the spatial evolution and dissipation of the HSV system at fin-tube junctions in a two-rows finned-tube heat exchanger. The global characterisation of the heat exchanger performance is also presented.

Design/methodology/approach

The flow structure is numerically analysed through the use of computational fluid dynamics tools. The different vortices of the HSV system are highlighted and quantitatively analysed at each fin-tube junction with vorticity, wall shear stress analysis and two-dimensional streamline plots around tubes.

Findings

The results show that the primary and secondary vortices of the HSV system have antagonistic behaviors with respect to the azimuthal angle variation. The optimum fin spacing ratio E/D that generates the most intense first primary vortex in the HSV system lies between 0.20 and 0.25. Similar observation are made on the thermalhydraulic performance of the heat exchanger as j/f exhibits a maximum value for a fin spacing ratio E/D=0.25.

Research limitations/implications

A detailed URANS simulation shows that even if the flow remains steady in the core of the heat exchanger, unsteady behavior is noticed in the wake of the second tube.

Originality/value

In this study, the flow topology is quantitatively analysed in successive radial planes around heat exchanger tubes. The strong effect of the fin spacing on the HSV generation and dissipation is deeply analysed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 May 2019

Seyed Abdolkarim Payambarpour, Mohammad Alhuyi Nazari, Mohammad Hossein Ahmadi and Ali J. Chamkha

This study aims to investigate heat and mass transfer in a one-row heat exchanger. The required equations are obtained based on two-dimensional model analysis in a cell of the…

Abstract

Purpose

This study aims to investigate heat and mass transfer in a one-row heat exchanger. The required equations are obtained based on two-dimensional model analysis in a cell of the heat exchanger. By using finite difference approach, the obtained equations are solved to determine distribution of temperature and the efficiency of the heat exchanger in the case of partially wet surface. In this research, Lewis Number as unity and water vapor saturation as parabolic are assumed. Obtained results show that increase in thermal conductivity fin leads to decreasing thermal resistance; therefore, temperature changes in radial from center to out of fin are reduced and efficiency of fin increases.

Design/methodology/approach

In this regard, fin material plays a significant role in fin efficiency. Changes in airflow also result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Moreover, the fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics, and it is a result of conjugate heat transfer mechanism, in which latent heat transfer in the fins with more wet surface has a significant role.

Findings

Thermal property and geometry of the fin under wet conditions play a more important role than the fin under dry conditions. Changes in airflow result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics.

Originality/value

Effects of the temperature of water supply and mass flow rate were considered in the study. The results had good agreement with actual data.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Ali Akbar Abbasian Arani, Ali Arefmanesh and Hamidreza Ehteram

The purpose of this paper is to recommend a validated numerical model for simulation the flue gases heat recovery recuperators. Due to fulfill of this demand, the influences of…

Abstract

Purpose

The purpose of this paper is to recommend a validated numerical model for simulation the flue gases heat recovery recuperators. Due to fulfill of this demand, the influences of ash fouling characteristics during the transient/steady-state simulation and optimization of a 3D complex heat exchanger equipped with inner plain fins and side plate fins are studied.

Design/methodology/approach

For the particle dispersion modeling, the discrete phase model is applied and the flow field has been solved using SIMPLE algorithm.

Findings

According to obtained results, for the recuperator equipped with combine inner plain and side plate fins, determination of ash fouling characteristics is really important, effective and determinative. It is clear that by underestimating the ash fouling characteristics, the achieved results are wrong and different with reality.

Originality/value

Finally, the configuration with inner plain fins with characteristics of: di =5 mm, do = 6 mm, dg = 2 mm, dk = 3 mm and NIPFT = 9 and side plate fins with characteristics of: TF = 3 mm, PF = 19 mm, NSPF = 17·2 = 34, WF = 10 mm, HF = 25 mm, LF = 24 mm and ß = 0° is introduced as the optimum model with the best performance among all studied configurations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 5 June 2023

Sonali A. Deshmukh, Praveen Barmavatu, Mihir Kumar Das, Bukke Kiran Naik, Vineet Singh Sikarwar, Alety Shivakrishna, Radhamanohar Aepuru and Rathod Subash

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in…

Abstract

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in order to reduce energy usage. Solar adsorption air cooling is a great alternative to traditional vapor compression air-conditioning. Solar adsorption has several advantages over traditional vapor-compression systems, including being a green cooling technology which uses solar energy to drive the cycle, using pure water as an eco-friendly HFC-free refrigerant, and being mechanically simple with only the magnetic valves as moving parts. Several advancements and breakthroughs have been developed in the area of solar adsorption air-conditioners during the previous decade. However, further study is required before this technology can be put into practise. As a result, this book chapter highlights current research that adds to the understanding of solar adsorption air-conditioning technologies, with a focus on practical research. These systems have the potential to become the next iteration of air-conditioning systems, with the benefit of lowering energy usage while using plentiful solar energy supplies to supply the cooling demand.

Article
Publication date: 1 December 1959

Peter W. Sherwood

Aluminium is being increasingly used in refinery construction. Applications range from storage tanks to moisture‐proofing pipe insulation; from heat exchangers to structural…

Abstract

Aluminium is being increasingly used in refinery construction. Applications range from storage tanks to moisture‐proofing pipe insulation; from heat exchangers to structural elements. The main reasons for this are its good resistance to many types of corrosion, low weight, low cost per unit volume, high thermal conductivity, non‐magnetic and non‐sparking characteristics, good reflectivity and good appearance. From the design engineer's point of view, the metal has the further advantages of good workability and high strength in its alloys. The author describes some of the current practices and experiences in the U.S.A.

Details

Anti-Corrosion Methods and Materials, vol. 6 no. 12
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 4 January 2013

Mostafa Odabaee, Michel De Paepe, Peter De Jaeger, Christophe T'Joen and Kamel Hooman

The purpose of this paper is to clarify the relationship between dust deposition effects on the thermohydraulic performance of a metal foam heat exchanger.

Abstract

Purpose

The purpose of this paper is to clarify the relationship between dust deposition effects on the thermohydraulic performance of a metal foam heat exchanger.

Design/methodology/approach

The paper uses finite volume approximation to solve the two‐dimensional volume‐averaged form of governing equations through and around a metal foam‐covered tube bundle. Modified porosity, permeability, and form drag coefficient for a dusty foam layer are obtained through the application of a thermal resistance network model.

Findings

The paper provides novel data to predict the fouling effects on the performance of foam‐wrapped tube bundles as air‐cooled heat exchangers. It is observed that depending on the deposited layer thickness, the increased pressure drop and heat transfer deterioration can be very significant.

Originality/value

This paper fulfils an identified need to study fouling effects on thermohydraulic performance of a foam heat exchanger.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 23