Search results

1 – 10 of over 18000
Article
Publication date: 17 June 2020

Tiago Oliveira, Wilber Vélez and Artur Portela

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Abstract

Purpose

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Design/methodology/approach

In the local domain, assigned to each node of a discretization, the work theorem establishes an energy relationship between a statically admissible stress field and an independent kinematically admissible strain field. This relationship, derived as a weighted residual weak form, is expressed as an integral local form. Based on the independence of the stress and strain fields, this local form of the work theorem is kinematically formulated with a simple rigid-body displacement to be applied by local meshfree and finite element numerical methods. The main feature of this paper is the use of a linearly integrated local form that implements a quite simple algorithm with no further integration required.

Findings

The reduced integration, performed by this linearly integrated formulation, plays a key role in the behavior of local numerical methods, since it implies a reduction of the nodal stiffness which, in turn, leads to an increase of the solution accuracy and, which is most important, presents no instabilities, unlike nodal integration methods without stabilization. As a consequence of using such a convenient linearly integrated local form, the derived meshfree and finite element numerical methods become fast and accurate, which is a feature of paramount importance, as far as computational efficiency of numerical methods is concerned. Three benchmark problems were analyzed with these techniques, in order to assess the accuracy and efficiency of the new integrated local formulations of meshfree and finite element numerical methods. The results obtained in this work are in perfect agreement with those of the available analytical solutions and, furthermore, outperform the computational efficiency of other methods. Thus, the accuracy and efficiency of the local numerical methods presented in this paper make this a very reliable and robust formulation.

Originality/value

Presentation of a new local mesh-free numerical method. The method, linearly integrated along the boundary of the local domain, implements an algorithm with no further integration required. The method is absolutely reliable, with remarkably-accurate results. The method is quite robust, with extremely-fast computations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 2001

Suvranu De and Klaus‐Jürgen Bathe

Computational efficiency and reliability are clearly the most important requirements for the success of a meshless numerical technique. While the basic ideas of meshless…

Abstract

Computational efficiency and reliability are clearly the most important requirements for the success of a meshless numerical technique. While the basic ideas of meshless techniques are simple and well understood, an effective meshless method is very difficult to develop. The efficiency depends on the proper choice of the interpolation scheme, numerical integration procedures and techniques of imposing the boundary conditions. These issues in the context of the method of finite spheres are discussed.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 14 April 2022

Ahmad Chihadeh and Michael Kaliske

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to…

Abstract

Purpose

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to consider the bond behavior between the reinforcement and the continuum.

Design/methodology/approach

The embedded approach is used for coupling reinforcement bars with continuum elements. This description is achieved by coupling continuum elements in the background mesh to the reinforcement bars, which are described using truss- finite elements. The coupling is implemented between the truss elements and the continuum elements in the background mesh through bond elements that allow for freely distributed truss elements independent of the continuum element discretization. The bond elements allow for modeling the bond behavior between the reinforcement and the continuum.

Findings

The paper introduces a novel method to include the reinforcement bars in the MPM applications. The reinforcement bars can be modeled without any constraints with a bond-slip constitutive model being considered.

Originality/value

As modeling of reinforced materials is required in a wide range of applications, a method to include the reinforcement into the MPM framework is required. The proposed approach allows for modeling reinforced material within MPM applications.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 February 2020

J.I. Ramos

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise…

Abstract

Purpose

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise analytical solutions in space, compare it with other finite-difference discretizations and assess the effects of advection and reaction on both 1D and two-dimensional (2D) problems.

Design/methodology/approach

A conservative method of lines based on the piecewise analytical integration of the two-point boundary value problems that result from the local solution of the advection-diffusion operator subject to the continuity of the dependent variables and their fluxes at the control volume boundaries is presented. The method results in nonlinear first-order, ordinary differential equations in time for the nodal values of the dependent variables at three adjacent grid points and triangular mass and source matrices, reduces to the well-known exponentially fitted techniques for constant coefficients and equally spaced grids and provides continuous solutions in space.

Findings

The conservative method of lines presented here results in three-point finite difference equations for the nodal values, implicitly treats the advection and diffusion terms and is unconditionally stable if the reaction terms are implicitly treated. The method is shown to be more accurate than other three-point, exponentially fitted methods for nonlinear problems with interior and/or boundary layers and/or source/reaction terms. The effects of linear advection in 1D reacting flow problems indicates that the wave front steepens as it approaches the downstream boundary, whereas its back corresponds to a translation of the initial conditions; for nonlinear advection, the wave front exhibits steepening but the wave back shows a linear dependence on space. For a system of two nonlinearly coupled, 2D ADR equations, it is shown that a counter-clockwise rotating vortical field stretches the spiral whose tip drifts about the center of the domain, whereas a clock-wise rotating one compresses the wave and thickens its arms.

Originality/value

A new, conservative method of lines that implicitly treats the advection and diffusion terms and provides piecewise-exponential solutions in space is presented and applied to some 1D and 2D advection reactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2008

Sanjay Kumar Khattri

This paper seeks to develop an adaptive finite volume algorithm, and to present an extensive numerical analysis of it.

Abstract

Purpose

This paper seeks to develop an adaptive finite volume algorithm, and to present an extensive numerical analysis of it.

Design/methodology/approach

The effectiveness of the developed algorithm is demonstrated through practical and computationally challenging problems. The algorithm is tested for a wide range of singularities.

Findings

The convergence of the presented algorithm is independent of the regularity of the problems. It is shown that the our algorithm produces more accurate and well conditioned matrix systems.

Research limitations/implications

Though the presented algorithm works for extreme singularities on rectangular meshes, it may not be as efficient if the underlying meshes are distorted, and it may not converge. Further research is under way for including the multi‐point approximation technique into the algorithm.

Practical implications

Almost all reservoir simulators use the two‐point method, and this algorithm is based on this method. The algorithm can be easily incorporated into the reservoir simulators. The results show that such an implementation will greatly improve the computational efficiency of the simulators. The work is useful for computational scientists, and especially for the researchers in oil industries. The paper reports the numerical work with practical applications.

Originality/value

The paper develops an adaptive finite volume algorithm. It is shown that adaptive meshes represent the underlying problem more accurately, and matrix systems associated with adaptive meshes are easier to solve compared with matrix systems associated with uniform meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 January 2007

B. Mendez and A. Velazquez

The purpose of this paper is to present numerical study on the behaviour of 2D unsteady incompressible laminar wakes behind square cylinders.

Abstract

Purpose

The purpose of this paper is to present numerical study on the behaviour of 2D unsteady incompressible laminar wakes behind square cylinders.

Design/methodology/approach

The numerical method that has been developed is based on a finite point formulation characterised by its weak connectivity requirements. This formulation allows for a patched unstructured approach to computational domain modelling that is of interest for industrial applications. Time evolution of pressure is computed by using a pseudo‐compressibility relaxation model that is based on physical considerations.

Findings

This model is characterised by the fact that no sub‐iterations on a numerical pseudo‐time are required so that computational efficiency is increased. Algorithm stability requires the use of second and fourth order artificial viscosity operators that effectively change the order of the equations. A discussion is included regarding the boundary conditions for these operators that do not influence vortex shedding behaviour.

Research limitations/implications

Bearing in mind the industrial drive (MEMS design) that the authors have in mind, solver validation has been addressed at two levels: global coefficients (lift, drag and Strouhal number) were compared with those published in the specialised literature, while local velocity and rms profiles were compared with those obtained after performing a specific low velocity wind tunnel testing campaign (Reynolds numbers in the range from 110 to 268).

Practical implications

A sensitivity analysis of the results obtained is presented and it shows that the solver numerical robustness makes it amenable for project oriented applications.

Originality/value

The formulation being presented is competitive and could be considered as a potential alternative to other approaches.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2000

Richard Friedrich

This bibliography contains references to papers, conference proceedings, theses and books dealing with finite strip, finite prism and finite layer analysis of structures…

1193

Abstract

This bibliography contains references to papers, conference proceedings, theses and books dealing with finite strip, finite prism and finite layer analysis of structures, materially and/or geometrically linear or non‐linear.

Details

Engineering Computations, vol. 17 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2017

Gholamreza Shobeyri and Mohammad Yourdkhani

The purpose of this paper is to develop an efficient and accurate mesh-less method to simulate free flows with continuous deformation in boundary positions.

Abstract

Purpose

The purpose of this paper is to develop an efficient and accurate mesh-less method to simulate free flows with continuous deformation in boundary positions.

Design/methodology/approach

A two-step pressure projection method in a Lagrangian form is used to solve the governing equations of mass and momentum conservation. In the first step, velocity field is calculated in which incompressibility is not enforced. In the second step, a pressure Poisson equation is applied to satisfy incompressibility conditions. The numerical proposed method is used for spatial discretization of the governing equations. Three benchmark-free surface problems, namely, dam break, solitary wave propagation and evolution of an elliptical bubble with available experimental results and analytical solutions, are used to test the accuracy of the proposed method. The results prove the accuracy of the method in simulating free surface problems.

Findings

The Voronoi diagram instead of kernel function summation can be used to estimate the particle or nodal volume concept in particle-based (mesh-less) methods for function approximation. This idea probably works well especially for highly irregular node distributions.

Originality/value

The continuous moving least squares shape functions are applied for function approximation, and the Voronoi diagram concept is also used to estimate region influence of computational nodal points or particle volumes. Combinations of these two concepts and finite differences formulation for first derivatives gives an accurate numerical model for Laplacian operator in the proposed method.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2014

Anis Younes, Ahmed Makradi, Ali Zidane, Qian Shao and Lyazid Bouhala

– The purpose of this paper is to develop an efficient non-iterative model combining advanced numerical methods for solving buoyancy-driven flow problems.

Abstract

Purpose

The purpose of this paper is to develop an efficient non-iterative model combining advanced numerical methods for solving buoyancy-driven flow problems.

Design/methodology/approach

The solution strategy is based on two independent numerical procedures. The Navier-Stokes equation is solved using the non-conforming Crouzeix-Raviart (CR) finite element method with an upstream approach for the non-linear convective term. The advection-diffusion heat equation is solved using a combination of Discontinuous Galerkin (DG) and Multi-Point Flux Approximation (MPFA) methods. To reduce the computational time due to the coupling, the authors use a non-iterative time stepping scheme where the time step length is controlled by the temporal truncation error.

Findings

Advanced numerical methods have been successfully combined to solve buoyancy-driven flow problems on unstructured triangular meshes. The accuracy of the results has been verified using three test problems: first, a synthetic problem for which the authors developed a semi-analytical solution; second, natural convection of air in a square cavity with different Rayleigh numbers (103-108); and third, a transient natural convection problem of low Prandtl fluid with horizontal temperature gradient in a rectangular cavity.

Originality/value

The proposed model is the first to combine advanced numerical methods (CR, DG, MPFA) for buoyancy-driven flow problems. It is also the first to use a non-iterative time stepping scheme based on local truncation error control for such coupled problems. The developed semi analytical solution based on Fourier series is also novel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2003

S. Xiong, J.M.C. Rodrigues and P.A.F. Martins

This paper presents a numerical approach for analysing three‐dimensional steady‐state rolling by means of the reproducing kernel particle method (RKPM). The approach is based on…

Abstract

This paper presents a numerical approach for analysing three‐dimensional steady‐state rolling by means of the reproducing kernel particle method (RKPM). The approach is based on the flow formulation for slightly compressible materials and a detailed description of RKPM and its numerical implementation is presented with the objective of providing the necessary background. Special emphasis is placed on the construction of shape functions and their derivatives, enforcement of the essential boundary conditions and treatment of frictional effects along the contact interface between the workpiece and the roll. The effectiveness of the proposed approach is discussed by comparing the theoretical predictions with the finite element calculations and experimental data found in the literature.

Details

Engineering Computations, vol. 20 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 18000