To read the full version of this content please select one of the options below:

Formulation of local numerical methods in linear elasticity

Tiago Oliveira (Department of Civil Engineering, University of Brasilia, Brasilia, Brazil)
Wilber Vélez (Department of Civil Engineering, University of Brasilia, Brasilia, Brazil)
Artur Portela (Department of Civil Engineering, University of Brasilia, Brasilia, Brazil)

Multidiscipline Modeling in Materials and Structures

ISSN: 1573-6105

Article publication date: 17 June 2020

Issue publication date: 16 September 2020

53

Abstract

Purpose

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Design/methodology/approach

In the local domain, assigned to each node of a discretization, the work theorem establishes an energy relationship between a statically admissible stress field and an independent kinematically admissible strain field. This relationship, derived as a weighted residual weak form, is expressed as an integral local form. Based on the independence of the stress and strain fields, this local form of the work theorem is kinematically formulated with a simple rigid-body displacement to be applied by local meshfree and finite element numerical methods. The main feature of this paper is the use of a linearly integrated local form that implements a quite simple algorithm with no further integration required.

Findings

The reduced integration, performed by this linearly integrated formulation, plays a key role in the behavior of local numerical methods, since it implies a reduction of the nodal stiffness which, in turn, leads to an increase of the solution accuracy and, which is most important, presents no instabilities, unlike nodal integration methods without stabilization. As a consequence of using such a convenient linearly integrated local form, the derived meshfree and finite element numerical methods become fast and accurate, which is a feature of paramount importance, as far as computational efficiency of numerical methods is concerned. Three benchmark problems were analyzed with these techniques, in order to assess the accuracy and efficiency of the new integrated local formulations of meshfree and finite element numerical methods. The results obtained in this work are in perfect agreement with those of the available analytical solutions and, furthermore, outperform the computational efficiency of other methods. Thus, the accuracy and efficiency of the local numerical methods presented in this paper make this a very reliable and robust formulation.

Originality/value

Presentation of a new local mesh-free numerical method. The method, linearly integrated along the boundary of the local domain, implements an algorithm with no further integration required. The method is absolutely reliable, with remarkably-accurate results. The method is quite robust, with extremely-fast computations.

Keywords

Acknowledgements

The first and the second authors acknowledge CNPq – Brazilian National Counsel of Technological and Scientific Development for their scholarships. They also acknowledge the program PECC – Pós-Graduação em Estruturas e Construção Civil, Department of Civil Engineering, University of Brasília.

Citation

Oliveira, T., Vélez, W. and Portela, A. (2020), "Formulation of local numerical methods in linear elasticity", Multidiscipline Modeling in Materials and Structures, Vol. 16 No. 5, pp. 853-886. https://doi.org/10.1108/MMMS-05-2018-0094

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles