Search results

1 – 10 of 427
Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 20 December 2022

Hamsavathi Kannan, Soorya Prakash K. and Kavimani V.

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement…

Abstract

Purpose

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement in bending strength, to increase confinement and to repair damages caused by cracking. In the early decades, using BF for composite materials shaped BF as an excellent physical substance with necessary mechanical properties, highlighting the significant procedures ability.

Design/methodology/approach

Specimens were casted with U-wrapped BF and then evaluated based on flexural tests. In the test carried over for flexural fortifying assessment, BF reinforcements demonstrated a definitive quality improvement in the case of the subjected control sample; ultimately, the end impacts depend upon the applied test parameters. From the outcomes introduced in this comparison, for the double-wrapped sample, the modifications improved by 12% than that of the single-wrapped beam, which is identified to subsist for a better strengthening of new-age retrofitting designs.

Findings

The current research deals with the retrofitting of RC beam by conducting a comparative experiment on wrapping of BF (single or double BF wrapping) in improving the mechanical behavior of concrete.

Originality/value

It can be shown from the experimental results that increasing the number of layers has significant effect on basalt strengthened beams.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 December 2023

Prashant Anerao, Atul Kulkarni and Yashwant Munde

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Abstract

Purpose

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Design/methodology/approach

The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM.

Findings

To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts.

Originality/value

The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 January 2024

Surender Kumar, Sanjay Yadav, Reetu Rani and Ashok Kumar Pathera

This paper aims to study the effects of plum powder and apple pomace powder additions on the quality properties of buffalo meat emulsion.

Abstract

Purpose

This paper aims to study the effects of plum powder and apple pomace powder additions on the quality properties of buffalo meat emulsion.

Design/methodology/approach

Buffalo meat emulsions were prepared using different levels (2%, 4% and 6%) of plum powder and apple pomace powder, respectively. The meat emulsions were analysed for the physico-chemical, sensory and textural properties of the meat emulsion.

Findings

The pH of meat emulsions decreased significantly (p < 0.05) with an increased level of plum powder and apple pomace powder. Water-holding capacity (43.1%–48.1%), emulsion stability (80.2%–92.2%) and cooking yield (85.4%–91.0%) were significantly (p < 0.05) higher in plum powder and apple pomace powder added than the water-holding capacity (42.1%), emulsion stability (79.7%) and cooking yield (85.0%) of control emulsion. The moisture content was decreased significantly (p < 0.05), and crude fibre content was increased significantly (p < 0.05) with the increase in plum powder and apple pomace powder additions in meat emulsions. The total phenolic content and colour values (a* and b*) were significantly higher in plum powder and apple pomace powder added to meat emulsions. The sensory scores of meat emulsions were affected by the addition of plum powder and apple pomace powder. The meat emulsion added with 6% plum powder and 6% apple pomace powder showed significantly lower values of sensory overall acceptability. The hardness of meat emulsions increased with the addition of plum powder and apple pomace powder.

Originality/value

The results indicated that meat emulsions with a good cooking yield, fibre content, sensory acceptability and textural properties can be prepared by using plum powder and apple pomace powder.

Details

Nutrition & Food Science , vol. 54 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 16 April 2024

Vaishali Choubey, Serlene Tomar, Surbhi Yadav, Bhavana Gupta, Ankur Khare, Pradeep Kumar Singh and Somesh Kumar Meshram

The purpose of the study was to produce a healthier, convenient and traditional ready-to-eat (RTE) snack option with increased nutritional value, using spent hen meat, dietary…

Abstract

Purpose

The purpose of the study was to produce a healthier, convenient and traditional ready-to-eat (RTE) snack option with increased nutritional value, using spent hen meat, dietary fibre (DF) and simple technological methods. The product was designed to be stable without refrigeration and be easily adoptable by local self-help groups, rural women and youth and entrepreneurs in urban and semi-urban areas.

Design/methodology/approach

Conventional binder used for making snacks, i.e. rice flour was partially replaced by different sources of antioxidant DFs, i.e. oat flour (T1 – 10%), finger millet flour (T2 – 5%) and amaranth flour (T3 –15%) to prepare spent hen snack sticks (SHSS). The snacks were then packaged in low density polyethylene (LDPE) pouches and evaluated for their storage stability at ambient temperature for a period of 35 days. Their physico-chemical, sensory and microbiological quality was evaluated at a regular interval of 7 days. The proximate composition of developed SHSS was compared to commercially available snack products (chakli/murukku – snacks without meat).

Findings

The fibre-enriched SHSS showed significant improvement in nutritive value, as they contained more fibre (p = 0.001) and protein (p = 0.029) than control SHSS. When compared to commercially available snack product SHSS showed three-fold significant increase in protein (p = 0.000) and ash content (p = 0.001) and only 11%–12% total fat as compared to 31% fat in the market-available product. The most acceptable treatment in terms of overall sensory quality and nutritional aspects was T3; however, T2 was more shelf-stable during the storage period. The study showed that fibre-enriched snacks can be stored at ambient temperature for up to 35 days without substantial loss in physico-chemical, sensory and microbial quality. Hence, substituting rice flour with DFs can lead to the development of products with better sensory attributes and improved functionality.

Social implications

The simplicity of the product in terms of composition, machinery and low production costs makes it an easily adoptable one by small-scale entrepreneurs, especially those belonging to semi-urban areas.

Originality/value

Incorporation of spent hen meat, a relatively cheap but abundant source of protein, in RTE products can serve as an effective way to alleviate protein malnutrition, whereas addition of fibre further improves the functionality of the product. The methodology can be easily taken up by small-scale entrepreneurs and create a market for snack-based functional meat products.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 28 April 2023

SVKSV Krishna Kiran Poodipeddi, Amarthya Singampalli, Lalith Sai Madhav Rayala and Surya Sudarsan Naveen Ravula

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel…

Abstract

Purpose

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel is an essential element of the vehicle suspension system that supports the static and dynamic loads encountered during its motion. The rim provides a firm base to hold the tire and supports the wheel, and it is also one of the load-bearing elements in the entire automobile as the car's weight and occupants' weight act upon it. The wheel rim should be strong enough to withstand the load with such a background, ensuring vehicle safety, comfort and performance. The dimensions, shape, structure and material of the rim are crucial factors for studying vehicle handling characteristics that demand automobile designers' concern.

Design/methodology/approach

In the present study, solid models of three different wheel rims, namely, R-1, R-2 and R-3, designed for three different cars, are modelled in SOLIDWORKS. Different carbon composite materials of polyetheretherketone (PEEK), namely, PEEK 90 HMF 40, PEEK 450 CA 30, PEEK 450 GL 40 and carbon fibre reinforced polymer-unidirectional (CFRP-UD) are used as rim materials for conducting the structural and fatigue analysis using ANSYS Workbench.

Findings

The results thus obtained in the analyses are used to identify the better carbon fibre composite material for the wheel rim such that it gives better structural properties and less fatigue. The R-3 model rim has shown better structural properties and less fatigue with PEEK 90 HMF 40 material.

Originality/value

The carbon composite materials used in this study have shown promissory results that can be used as an alternative for aluminium, steel and other regular materials.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2024

Suvranshu Pattanayak, Susanta Kumar Sahoo, Ananda Kumar Sahoo, Raviteja Vinjamuri and Pushpendra Kumar Dwivedi

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc…

Abstract

Purpose

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc attachment, and the system’s arc is ignited between tungsten electrode and filler wire.

Design/methodology/approach

The effect of various deposition conditions (welding voltage, travel speed and wire feed speed [WFS]) on bead characteristics is studied through response surface methodology (RSM). Under optimum deposition condition, a single-bead and thin-layered part is fabricated and subjected to microstructural, tensile testing and X-ray diffraction study. Moreover, bulk texture analysis has been carried out to illustrate the effect of thermal cycles and tensile-induced deformations on fibre texture evolutions.

Findings

RSM illustrates WFS as a crucial deposition parameter that suitably monitors bead width, height, penetration depth, dilution, contact angle and microhardness. The ferritic (acicular and polygonal) and lath bainitic microstructure is transformed into ferrite and pearlitic micrographs with increasing deposition layers. It is attributed to a reduced cooling rate with increased depositions. Mechanical testing exhibits high tensile strength and ductility, which is primarily due to compressive residual stress and lattice strain development. In deposits, ϒ-fibre evolution is more resilient due to the continuous recrystallisation process after each successive deposition. Tensile-induced deformation mostly favours ζ and ε-fibre development due to high strain accumulations.

Originality/value

This modified electrode arrangement in NTA-WAM suitably reduces spatter and bead height deviation. Low penetration depth and dilution denote a reduction in heat input that enhances the cooling rate.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 427