Search results

1 – 10 of 799
Article
Publication date: 28 September 2021

Chenchen Han and Weidong Gao

The purpose of the paper is researching on the motion law of fiber in the vortex field inside the nozzle.

Abstract

Purpose

The purpose of the paper is researching on the motion law of fiber in the vortex field inside the nozzle.

Design/methodology/approach

A three-dimensional calculation model was established using the MVS861 (Muratec Vortex Spinning) air-jet vortex-spinning nozzle as the prototype, and the fluid–solid coupling calculation module in the finite element calculation software ADINA (Adina System) was used to numerically analyze the fiber-air flow two-phase coupling. At the same time, the effect of the air pressure at the nozzle on the two-phase flow is studied.

Findings

The results show that after the air flow ejected through the nozzle, a vortex field will be generated in the flow field to push the internal fiber to move toward the nozzle outlet in a wave motion; as the air pressure at the nozzle increases, the fiber movement period becomes shorter and the oscillation frequency becomes higher; increasing the air pressure at the spray hole can improve the working efficiency of fiber twisting and wrapping.

Originality/value

The research present an effective and feasible theoretical model and method for the motion law of fiber in the vortex field inside the nozzle based on ADINA fluid–structure coupling model.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1553

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields…

Abstract

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields. Looks at the coupling of fields in a device or a system as a prescribed effect. Points out that there are 12 contributions included ‐ covering magnetic levitation or induction heating, superconducting devices and possible effects to the human body due to electric impressed fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1992

Y.W. KWON

A formulation has been developed for thermo‐elastoviscoplastic finite element analyses of continuous fibre‐reinforced composite plates subject to bending loading using a…

Abstract

A formulation has been developed for thermo‐elastoviscoplastic finite element analyses of continuous fibre‐reinforced composite plates subject to bending loading using a generalized continuum mechanics approach. Such an approach is used to model the non‐homogeneity in a composite, which is constituted by fibres embedded in a matrix material. The present formulation computes the respective stresses occurring in each constituent so that the respective yield criterion and flow rule of each constituent may be used if there is a material yielding in any constituent. Thermo‐elastic deformation of fibre and thermo‐elastoviscoplastic deformation of matrix are considered in the present study because the yield strength of fibre is substantially higher than that of matrix in many cases. Both constituents are assumed to be isotropic so that the von‐Mises yield criterion may be used for viscoplastic yielding of matrix. As numerical examples, a parametric study is performed for thermo‐elastoviscoplastic deformations of laminated composite plates subject to thermal bending loads.

Details

Engineering Computations, vol. 9 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2018

Lien Zhu, Di Wu, Baolong Wang, Jing Zhao, Zheng Jin and Kai Zhao

The purpose of this paper is to find a new method to reinforce high-density polyethylene (HDPE) with polyacrylonitrile fibers (PAN). Furthermore, the crystallinity…

Abstract

Purpose

The purpose of this paper is to find a new method to reinforce high-density polyethylene (HDPE) with polyacrylonitrile fibers (PAN). Furthermore, the crystallinity, viscoelasticity and thermal properties of HDPE composites have also been investigated and compared.

Design/methodology/approach

For effective reinforcing, samples with different content fillers were prepared. HDPE composites were prepared by melt blending with double-screw extruder prior to cutting into particles and the samples for testing were made using an injection molding machine.

Findings

With the addition of 9 Wt.% PAN fibers, it was found that the tensile strength and flexural modulus got the maximum value in all HDPE composites and increased by 1.2 times than pure HDPE. The shore hardness, storage modulus and vicat softening point of the composites improved continuously with the increase in the proportion of the fibers. The thermal stability and processability of composites did not change rapidly with the addition of PAN fibers. The degree of crystallinity increased with the addition of PAN fibers. In general, the composites achieve the best comprehensive mechanical properties with the fiber content of 9 Wt.%.

Practical implications

The fibers improve the strength of the polyethylene and enhance its ability to resist deformation.

Originality/value

The modified HDPE by PAN fibers in this study have high tensile strength and resistance to deformation and can be used as an efficient material in engineering, packaging and automotive applications.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6047

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1103

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 October 2010

Yongrong Wang, Peihua Zhang, Xunwei Feng and Yuan Yao

The paper aims to develop a system and measuring method for investigating the dynamic pressure behavior of compression garments.

Abstract

Purpose

The paper aims to develop a system and measuring method for investigating the dynamic pressure behavior of compression garments.

Design/methodology/approach

The dynamic pressure behavior measurement, realized by use of the self‐designed system, is a direct measuring method, which is based on a rigid hemisphere with five pressure sensors distributed on its surface. The dynamic pressure is measured over time under the process of fabric 3D deformation. The pressure distributions at the basic five sites are accepted as the measuring results. The dynamic stiffness index can be calculated from dynamic pressure profile and 3D deformation of compression garments.

Findings

The measuring system records the pressure‐time curve and pressure‐deformation curve. The dynamic pressure stiffness index expresses the change in pressure owing to the change in elongation of compression fabrics. The pressure measuring system and the index provide much information in the field of compression garment assessment.

Research limitations/implications

Another characteristic that was not mentioned but important is pressure hysteresis, which can give the information about pressure decay when fabrics undergoing repeated stretch and relaxation. The influence factors of hysteresis and its role in compression garments also requires further research.

Originality/value

To determine and characterize the dynamic pressure behavior of compression garment under 3D deformation, this study develops a measuring system and defines a new index. The measuring system can be used in scientific research institutes and factories, contribute to optimize process parameters and quality control of compression garment.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2607

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 799