Search results

1 – 10 of 30
Article
Publication date: 23 July 2024

Basharat Ullah and Faisal Khan

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in…

Abstract

Purpose

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in literature for transportation systems such as high-speed trains and maglev systems.

Design/methodology/approach

The structural designs of different configurations are thoroughly investigated, and their respective advantages and disadvantages are examined. Based on the geometry and excitation sources, a detailed survey is carried out. Specific design and space issues, such as solid and modular structures, structure strength, excitation sources placement, utilization of PM materials, and flux leakage are investigated.

Findings

PMLFSM provide higher power density and efficiency than induction and DC machines because of the superior excitation capability of PMs. The cost of rare-earth PMs has risen sharply in the past few decades because of their frequent use, so the manufacturing cost of PMLFSM is increasing. Owing to the influence of high-energy PMs and magnetic flux concentration, the efficiency and power density are higher in such machines. PM is the only excitation source in PMLFSM and has constant remanence, limiting its applications in a wide speed operation range. Therefore, the field winding is added in the PMLFSM to flexibly regulate the magnetic field, making it a hybrid excited one. The HELFSM possess better flux linkage, high thrust force density and better flux controlling ability, leading to a wide speed range. However, the HELFSM have problems with the crowded mover, as PM, field excited and armature excitation are housed on a short mover. So, for better performance, the area of each excitation component has to compete with each other.

Originality/value

Transportation of goods and people by vehicles is becoming increasingly prevalent. As railways play a significant role in the transportation system and are an integral part of intercity transportation. So, this paper presents an overview of various linear machines that are presented in literature for rail transit systems to promote sustainable urban planning practices.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 June 2024

Ritu Gupta and Sudeep Kumar

This work examines a repairable machining system’s reliability by considering multiple failure scenarios, including individual component failures, hardware and software…

Abstract

Purpose

This work examines a repairable machining system’s reliability by considering multiple failure scenarios, including individual component failures, hardware and software malfunctions, failures resulting from shared causes and failures caused by human error. When a system is susceptible to several modes of failure, the primary goal is to forecast availability and other reliability metrics as well as to calculate the expected profit of the repairable machining system.

Design/methodology/approach

The process of recovering after a system failure involves inspecting the system and fixing any malfunctions that may have occurred. The repair procedures for all kinds of faults are taken to follow a general distribution to represent real-time circumstances. We develop a non-Markovian stochastic model representing different system states that reveal working, failed, degraded, repair and delayed repair states. Laplace transformation and the supplementary variable technique are used to assess the transient states of the system.

Findings

Analytical expressions for system performance indices such as availability, reliability and cost-benefit analysis are derived. The transient probabilities when the system experiences in different states such as failed, degraded and delayed states are computed. The results obtained are validated using Mathematica software by performing a numerical illustration on setting default values of unknown parameters. This ensures the accuracy and reliability indices of the analytical predictions.

Originality/value

By methodically examining the system in its several states, we will be able to spot possible problems and offer efficient fixes for recovery. The system administrators would check to see if a minor or major repair is needed, or if a replacement is occasionally taken into consideration to prevent recurring repairs.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 24 July 2024

Ritika Chopra, Seema Bhardwaj, Park Thaichon and Kiran Nair

The present study undertakes an extensive review of the causes of service failures in artificial intelligence (AI) technology literature.

Abstract

Purpose

The present study undertakes an extensive review of the causes of service failures in artificial intelligence (AI) technology literature.

Design/methodology/approach

A hybrid review has been employed which includes descriptive analysis, and bibliometric analysis with content analysis of the literature approach to synthesizing existing research on a certain topic. The study has followed the SPAR-4-SLR protocol as outlined by Paul et al. (2021). The search period encompasses the progression of service failure in AI from 2001 to 2023.

Findings

From identified theories, theoretical implications are derived, and thematic maps direct future research on topics such as data mining, smart factories, and among others. The key themes are being proposed incorporates technological elements, ethical deliberations, and cooperative endeavours.

Originality/value

This research study makes a valuable contribution to understanding and reducing service defects in AI by providing insights that can inform future investigations and practical implementations. Six key future research directions are derived from the thematic and cluster discussions presented in the content analysis.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Open Access
Article
Publication date: 10 February 2022

Fei Xie, Jun Yan and Jun Shen

Although proactive fault handling plans are widely spread, many unexpected data center outages still occurred. To rescue the jobs from faulty data centers, the authors propose a…

Abstract

Purpose

Although proactive fault handling plans are widely spread, many unexpected data center outages still occurred. To rescue the jobs from faulty data centers, the authors propose a novel independent job rescheduling strategy for cloud resilience to reschedule the task from the faulty data center to other working-proper cloud data centers, by jointly considering job nature, timeline scenario and overall cloud performance.

Design/methodology/approach

A job parsing system and a priority assignment system are developed to identify the eligible time slots for the jobs and prioritize the jobs, respectively. A dynamic job rescheduling algorithm is proposed.

Findings

The simulation results show that our proposed approach has better cloud resiliency and load balancing performance than the HEFT series approaches.

Originality/value

This paper contributes to the cloud resilience by developing a novel job prioritizing, task rescheduling and timeline allocation method when facing faults.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 8 August 2024

Yi He, Feiyu Li and Xincan Liu

In today’s digital economy, it is very important to cultivate digital professionals with advanced interdisciplinary skills. The purpose of this paper is that universities play a…

Abstract

Purpose

In today’s digital economy, it is very important to cultivate digital professionals with advanced interdisciplinary skills. The purpose of this paper is that universities play a vital role in this effort, and research teams need to use the synergistic effect of various educational methods to improve the quality and efficiency of personnel training. For these teams, a powerful evaluation mechanism is very important to improve their innovation ability and the overall level of talents they cultivate. The policy of “selecting the best through public bidding” not only meets the multi-dimensional evaluation needs of contemporary research, but also conforms to the current atmosphere of evaluating scientific and technological talents.

Design/methodology/approach

Nonetheless, since its adoption, several challenges have emerged, including flawed project management systems, a mismatch between listed needs and actual core technological needs and a low rate of conversion of scientific achievements into practical outcomes. These issues are often traced back to overly simplistic evaluation methods for research teams. This paper reviews the literature on the “Open Bidding for Selecting the Best Candidates” policy and related evaluation mechanisms for research teams, identifying methodological shortcomings, a gap in exploring team collaboration and an oversight in team selection criteria.

Findings

It proposes a theoretical framework for the evaluation and selection mechanisms of research teams under the “Open Bidding for Selecting the Best Candidates” model, offering a solid foundation for further in-depth studies in this area.

Originality/value

Research progress on the Evaluation Mechanism of Scientific Research Teams in the Digital Economy Era from the Perspective of “Open Bidding for Selecting the Best Candidates.”

Details

Journal of Internet and Digital Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2752-6356

Keywords

Article
Publication date: 20 September 2024

Wenqi Zhang, Zhenbao Liu, Xiao Wang and Luyao Wang

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the…

Abstract

Purpose

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the stability of the aforementioned aircraft.

Design/methodology/approach

This paper uses a linear sliding mode control algorithm to analyse the stability of the UAV's attitude in a level flight state. In addition, a wind-resistant control algorithm based on the estimation of wind disturbance with a radial basis function neural network is proposed. Through the modelling of the flying wing layout UAV, the stability characteristics of a sample UAV are analysed based on the simulation data. The stability characteristics of the sample UAV are analysed based on the simulation data.

Findings

The simulation results indicate that the UAV with a flying wing layout has a short fuselage, no tail with a horizontal stabilising surface and the aerodynamic focus of the fuselage and the centre of gravity is nearby, which is indicative of longitudinal static instability. In addition, the absence of a drogue tail and the reliance on ailerons and a swept-back angle for stability result in a lack of stability in the transverse direction, whereas the presence of stability in the transverse direction is observed.

Originality/value

The analysis of the stability characteristics of the sample aircraft provides the foundation for the subsequent establishment of the control model for the flying wing layout UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 September 2024

Shihui Tian and Ke Xu

The purpose of this paper is to investigate the fault estimation issue of nonlinear dynamical systems via distributed sensor networks. Furthermore, based on the communication…

Abstract

Purpose

The purpose of this paper is to investigate the fault estimation issue of nonlinear dynamical systems via distributed sensor networks. Furthermore, based on the communication topology of sensor networks, the nonfragile design strategy considering the gain fluctuation is also adopted for distributed fault estimators.

Design/methodology/approach

By means of intensive dynamical model transformation, sufficient conditions with disturbance attenuation performance are established to design desired fault estimator gains with the help of convex optimization.

Findings

A novel distributed fault estimation framework for a class of nonlinear dynamical systems is established over a set of distributed sensor networks, where sampled data of sensor nodes via local information exchanges can be used for more efficiency.

Originality/value

The proposed distributed fault estimator gain fluctuations are taken into account for the nonfragile strategy, such that the distributed fault estimators are more applicable for practical sensor networks implementations. In addition, an illustrative example with simulation results are provided to validate the effectiveness and applicableness of the developed distributed fault estimation technique.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 23 August 2024

Libiao Bai, Shiyi Liu, Yuqin An and Qi Xie

Project portfolio benefit (PPB) evaluation is crucial for project portfolio management decisions. However, PPB is complex in composition and affected by synergy and ambidexterity…

Abstract

Purpose

Project portfolio benefit (PPB) evaluation is crucial for project portfolio management decisions. However, PPB is complex in composition and affected by synergy and ambidexterity. Ignoring these characteristics can result in inaccurate assessments, impeding the management and optimization of benefit. Considering the above complexity of PPB evaluation, this study aims to propose a refined PPB evaluation model to provide decision support for organizations.

Design/methodology/approach

A back propagation neural network optimized via genetic algorithm and pruning algorithm (P-GA-BPNN) is constructed for PPB evaluation. First, the benefit evaluation criteria are established. Second, the inputs and expected outputs for model training and testing are determined. Then, based on the optimization of BPNN via genetic algorithm and pruning algorithm, a PPB evaluation model is constructed considering the impacts of ambidexterity and synergy on PPB. Finally, a numerical example was applied to validate the model.

Findings

The results indicate that the proposed model can be used for effective PPB evaluation. Moreover, it shows superiority in terms of MSE and fitting effect through extensive comparative experiments with BPNN, GA-BPNN, and SVM models. The robustness of the model is also demonstrated via data random disturbance experiment and 10-cross-validation. Therefore, the proposed model could serve as a valuable decision-making tool for PPB management.

Originality/value

This study extends prior research by integrating the impacts of synergy and ambidexterity on PPB when conducting PPB evaluation, which facilitates to manage and enhance PPB. Besides, the structural redundancy of existing assessment methods is solved through the dynamic optimization of the network structure via the pruning algorithm, enhancing the effectiveness of PPB decision-making tools.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 27 August 2024

Khalil Rahi, Mohamad Alghoush and Roger Halaby

As part of the scale development process, this paper aims to test a scale to measure organizational resilience for the oil and gas industry. The objective is to provide…

Abstract

Purpose

As part of the scale development process, this paper aims to test a scale to measure organizational resilience for the oil and gas industry. The objective is to provide stakeholders with a set of indicators to evaluate their organizations and prepare them to cope with the negative consequences of disruptions (e.g. Covid-19, shortage of resources, etc.).

Design/methodology/approach

The paper conducts exploratory and confirmatory factor analysis to test the suitability, dimensionality and reliability of specific indicators and their items under examination. Therefore, the goal is not to validate hypotheses by testing an organizational resilience scale in the oil and gas industry.

Findings

The study tests and proposes a scale to effectively measure organizational resilience within the oil and gas industry. A comprehensive set of ten indicators and 40 items are identified through this process. The findings of this research provide stakeholders in this sector with a rigorous set of indicators to evaluate the strengths and weaknesses of their organizations and better prepare them to handle disruptions.

Originality/value

This paper fills the gap in existing research by testing and proposing a scale to measure organizational resilience specifically for the oil and gas industry. It highlights the importance of organizational resilience for survival in a sector that is especially susceptible to disruptions.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 22 April 2022

Kamalakshi Dayal and Vandana Bassoo

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational…

Abstract

Purpose

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational power; the combination of which existing research seldom focuses on. Although bio-inspired algorithms provide a way to control energy usage by finding optimal routing paths, those which converge slower require even more computational power, which altogether degrades the overall lifetime of SNs.

Design/methodology/approach

Hence, two novel routing protocols are proposed using the Red-Deer Algorithm (RDA) in a WSN scenario, namely Horizontal PEG-RDA Equal Clustering and Horizontal PEG-RDA Unequal Clustering, to address the limited computational power of SNs. Clustering, data aggregation and multi-hop transmission are also integrated to improve energy usage. Unequal clustering is applied in the second protocol to mitigate the hotspot problem in Horizontal PEG-RDA Equal Clustering.

Findings

Comparisons with the well-founded Ant Colony Optimisation (ACO) algorithm reveal that RDA converges faster by 85 and 80% on average when the network size and node density are varied, respectively. Furthermore, 33% fewer packets are lost using the unequal clustering approach which also makes the network resilient to node failures. Improvements in terms of residual energy and overall network lifetime are also observed.

Originality/value

Proposal of a bio-inspired algorithm, namely the RDA to find optimal routing paths in WSN and to enhance convergence rate and execution time against the well-established ACO algorithm. Creation of a novel chain cluster-based routing protocol using RDA, named Horizontal PEG-RDA Equal Clustering. Design of an unequal clustering equivalent of the proposed Horizontal PEG-RDA Equal Clustering protocol to tackle the hotspot problem, which enhances residual energy and overall network lifetime, as well as minimises packet loss.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 30