Search results

1 – 10 of 951
Article
Publication date: 31 July 2024

Shenglei Wu, Jianhui Liu, Yazhou Wang, Jumei Lu and Ziyang Zhang

Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue…

Abstract

Purpose

Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue life's prediction accuracy. Based on this, this research intends to analyze the fatigue data with small sample characteristics, and then realize the life assessment under different stress levels.

Design/methodology/approach

Firstly, the Bootstrap method and the principle of fatigue life percentile consistency are used to realize sample aggregation and information fusion. Secondly, the classical outlier detection algorithm (DBSCAN) is used to check the sample data. Then, based on the stress field intensity method, the influence of the non-uniform stress field near the notch root on the fatigue life is analyzed, and the calculation methods of the fatigue damage zone radius and the weighting function are revised. Finally, combined with Weibull distribution, a framework for assessing multiaxial low-cycle fatigue life has been developed.

Findings

The experimental data of Q355(D) material verified the model and compared it with the Yao’s stress field intensity method. The results show that the predictions of the model put forward in this research are all located within the double dispersion zone, with better prediction accuracies than the Yao’s stress field intensity method.

Originality/value

Aiming at the fatigue test data with small sample characteristics, this research has presented a new method of notch fatigue analysis based on the stress field intensity method, which is combined with the Weibull distribution to construct a low-cycle fatigue life analysis framework, to promote the development of multiaxial fatigue from experimental studies to practical engineering applications.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 August 2024

Guocheng Lv, Dawei Jia, Changyou Li, Chunyu Zhao, Xiulu Zhang, Feng Yan, Hongzhuang Zhang and Bing Li

This study aims to investigate the effect of countersunk rivet head dimensions on the fatigue performance of the riveted specimens of 2024-T3 alloy.

Abstract

Purpose

This study aims to investigate the effect of countersunk rivet head dimensions on the fatigue performance of the riveted specimens of 2024-T3 alloy.

Design/methodology/approach

The relationship between rivet head dimensions and fatigue behavior was investigated by finite element method and fatigue test. The fatigue fracture of the specimens was analyzed by scanning electron microscopy.

Findings

A change of the rivet head dimensions will cause a change in the stress concentration and residual normal stress, the stress concentration near the rivet hole causes the fatigue crack source to be located on the straight section of the countersunk rivet hole and the residual normal stress can effectively restrain the initiation and expansion of fatigue cracks. The fatigue cycle will cause the rivet holes to produce different degrees of surface wear.

Originality/value

The fatigue life of the specimens with the height of the rivet head of 2.28 mm and 2.00 mm are similar, but the specimens with the height of the rivet head of 1.72 mm were far higher than the other specimens.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 August 2024

Susheel Pandey, Rajeev Srivastava, Christ Prakash Paul, Arun Kumar Rai and Rakesh Narain

The aim of this paper is to study the effect of laser shock peening (LSP) on mechanical behaviour of the laser-directed energy deposition (LDED)-based printed 15-5 PH stainless…

Abstract

Purpose

The aim of this paper is to study the effect of laser shock peening (LSP) on mechanical behaviour of the laser-directed energy deposition (LDED)-based printed 15-5 PH stainless steel with U and V notches. The study specifically concentrates on the evaluation of effect of scan strategy, machining and LSP processing on microstructural, texture evolution and fatigue behaviour of LDED-printed 15-5 PH steel.

Design/methodology/approach

For LSP treatment, 15-5 PH steel was printed using LDED process with bidirectional scanning strategy (XX [θ = 0°) and XY [θ = 90°]) at optimised laser power of 600 W with a scanning speed of 300 mm/min and a powder feed rate of 3 g/min. Furthermore, LSP treatment was conducted on the V- and U-notched fatigue specimens extracted from LDED-built samples at laser energy of 3.5 J with a pulse width of 10 ns using laser spot diameter of 3 mm. Post to the LSP treatment, the surface roughness, fatigue life assessment and microstructural evolution analysis is performed. For this, different advanced characterisation techniques are used, such as scanning electron microscopy attached with electron backscatter diffraction for microstructure and texture, X-ray diffraction for residual stress (RS) and structure information, Vicker’s hardness tester for microhardness and universal testing machine for low-cycle fatigue.

Findings

It is observed that both scanning strategies during the LDED printing of 15-5 PH steel and laser peening have played significant role in fatigue life. Specimens with the XY printing strategy shows higher fatigue life as compared to XX with both U- and V-notched conditions. Furthermore, machining and LSP treatment led to a significant improvement of fatigue life for both scanning strategies with U and V notches. The extent of increase in fatigue life for both XX and XY scanning strategy with V notch is found to be higher than U notch after LSP treatment, though without LSP samples with U notch have a higher fatigue life. As fabricated sample is found to have the lowest fatigue life as compared to machines and laser peened with both scan strategies.

Originality/value

This study presents an innovative method to improve the fatigue life of 15-5 PH stainless steel by changing the microstructure, texture and RS with the adoption of a suitable scanning strategy, machining and LSP treatment as post-processing. The combination of preferred microstructure and compressive RS in LDED-printed 15-5 PH stainless steel achieved with a synergy between microstructure and RS, which is responsible to improve the fatigue life. This can be adopted for the futuristic application of LDED-printed 15-5 PH stainless steel for different applications in aerospace and other industries.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

74

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 24 May 2024

Lei Gan, Anbin Wang, Zheng Zhong and Hao Wu

Data-driven models are increasingly being used to predict the fatigue life of many engineering components exposed to multiaxial loading. However, owing to their high data…

Abstract

Purpose

Data-driven models are increasingly being used to predict the fatigue life of many engineering components exposed to multiaxial loading. However, owing to their high data requirements, they are cost-prohibitive and underperforming for application scenarios with limited data. Therefore, it is essential to develop an advanced model with good applicability to small-sample problems for multiaxial fatigue life assessment.

Design/methodology/approach

Drawing inspiration from the modeling strategy of empirical multiaxial fatigue models, a modular neural network-based model is proposed with assembly of three sub-networks in series: the first two sub-networks undergo pretraining using uniaxial fatigue data and are then connected to a third sub-network trained on a few multiaxial fatigue data. Moreover, general material properties and necessary loading parameters are used as inputs in place of explicit damage parameters, ensuring the universality of the proposed model.

Findings

Based on extensive experimental evaluations, it is demonstrated that the proposed model outperforms empirical models and conventional data-driven models in terms of prediction accuracy and data demand. It also holds good transferability across various multiaxial loading cases.

Originality/value

The proposed model explores a new avenue to incorporate uniaxial fatigue data into the data-driven modeling of multiaxial fatigue life, which can reduce the data requirement under the promise of maintaining good prediction accuracy.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 July 2024

Ehsan MirHosseini, Seyed Ali Agha Mirjalily, Amir Javad Ahrar, Seyed Amir Abbas Oloomi and Mohammad Hasan Zare

This study aims to investigate the impact of varying the number of minimum quantity lubrication (MQL) nozzles, wind pressure, spindle speed and type of lubrication on surface…

48

Abstract

Purpose

This study aims to investigate the impact of varying the number of minimum quantity lubrication (MQL) nozzles, wind pressure, spindle speed and type of lubrication on surface roughness, fatigue life and tool wear in the drilling of aluminum alloy 6061-T6.

Design/methodology/approach

The effect of using different lubricants such as palm oil, graphene/water nanofluid and SiO2/water in the MQL method was compared with flood and dry methods. The lubricant flow and feed rate were kept constant throughout the drilling, while the number of nozzles, wind pressure and spindle speed varied. After preparing the parts, surface roughness, fatigue life and tool wear were measured, and the results were analyzed by ANOVA.

Findings

The results showed that using MQL with four nozzles and graphene/water nanofluid reduced surface roughness by 60%, followed by SiO2 nanofluid at 56%, and then by palm oil at 50%. Increasing the spindle speed in MQL mode with four nozzles using graphene nanofluid decreased surface roughness by 52% and improved fatigue life by 34% compared to the dry mode. SEM results showed that tool wear and deformation rates significantly decreased. Increasing the number of nozzles caused the fluid particles to penetrate the cutting area, resulting in improved tool cooling with lubrication in all directions.

Originality/value

Numerous attempts have been made worldwide to eliminate industrial lubricants due to environmental pollution. In this research, using nanofluid with wind pressure in MQL reduces environmental impacts and production costs while improving the quality of the final workpiece more than flood and dry methods.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0021/

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 August 2024

Ibrahim T. Teke and Ahmet H. Ertas

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to…

Abstract

Purpose

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to demonstrate how submodeling – more especially, a 1D approach – can reliably and effectively produce ideal solutions for challenging structural issues. The paper aims to demonstrate the usefulness of submodeling in obtaining converged solutions for stress analysis and optimized geometry for improved fatigue life by studying a cantilever beam case and using beam formulations. In order to guarantee the precision and dependability of the optimization process, the developed approach will also be validated through experimental testing, such as 3-point bending tests and 3D printing. Using 3D finite element models, the 1D submodeling approach is further validated in the final step, showing a strong correlation with experimental data for deflection calculations.

Design/methodology/approach

The authors conducted a literature review to understand the existing research on submodeling and its practical applications in finite element modeling. They selected a cantilever beam case as a test subject to demonstrate stress analysis and topology optimization through submodeling. They developed a 1D submodeling approach to streamline the optimization process and ensure result validity. The authors utilized beam formulations to optimize and validate the outcomes of the submodeling approach. They 3D-printed the optimized models and subjected them to a 3-point bending test to confirm the accuracy of the developed approach. They employed 3D finite element models for submodeling to validate the 1D approach, focusing on specific finite elements for deflection calculations and analyzed the results to demonstrate a strong correlation between the theoretical models and experimental data, showcasing the effectiveness of the submodeling methodology in achieving optimal solutions efficiently and accurately.

Findings

The findings of the paper are as follows: 1. The use of submodeling, specifically a 1D submodeling approach, proved to be effective in achieving optimal solutions more efficiently and accurately in finite element modeling. 2. The study conducted on a cantilever beam case demonstrated successful stress analysis and topology optimization through submodeling, resulting in optimized geometry for enhanced fatigue life. 3. Beam formulations were utilized to optimize and validate the outcomes of the submodeling approach, leading to the successful 3D printing and testing of the optimized models through a 3-point bending test. 4. Experimental results confirmed the accuracy and validity of the developed submodeling approach in streamlining the optimization process. 5. The use of 3D finite element models for submodeling further validated the 1D approach, with specific finite elements showing a strong correlation with experimental data in deflection calculations. Overall, the findings highlight the effectiveness of submodeling techniques in achieving optimal solutions and validating results in finite element modeling, stress analysis and optimization processes.

Originality/value

The originality and value of the paper lie in its innovative approach to utilizing submodeling techniques in finite element modeling for structural analysis and optimization. By focusing on the reduction of finite element models and the creation of smaller, more manageable models through submodeling, the paper offers designers a more efficient and accurate way to achieve optimal solutions for complex problems. The study's use of a cantilever beam case to demonstrate stress analysis and topology optimization showcases the practical applications of submodeling in real-world scenarios. The development of a 1D submodeling approach, along with the utilization of beam formulations and 3D printing for experimental validation, adds a novel dimension to the research. Furthermore, the paper's integration of 1D and 3D submodeling techniques for deflection calculations and validation highlights the thoroughness and rigor of the study. The strong correlation between the finite element models and experimental data underscores the reliability and accuracy of the developed approach. Overall, the originality and value of this paper lie in its comprehensive exploration of submodeling techniques, its practical applications in structural analysis and optimization and its successful validation through experimental testing.

Article
Publication date: 28 November 2023

Mohamad Javad Baghiat Esfahani and Saeed Ketabi

This study attempts to evaluate the effect of the corpus-based inductive teaching approach with multiple academic corpora (PICA, CAEC and Oxford Corpus of Academic English) and…

Abstract

Purpose

This study attempts to evaluate the effect of the corpus-based inductive teaching approach with multiple academic corpora (PICA, CAEC and Oxford Corpus of Academic English) and conventional deductive teaching approach (i.e., multiple-choice items, filling the gap, matching and underlining) on learning academic collocations by Iranian advanced EFL learners (students learning English as a foreign language).

Design/methodology/approach

This is a quasi-experimental, quantitative and qualitative study.

Findings

The result showed the experimental group outperformed significantly compared with the control group. The experimental group also shared their perception of the advantages and disadvantages of the corpus-assisted language teaching approach.

Originality/value

Despite growing progress in language pedagogy, methodologies and language curriculum design, there are still many teachers who experience poor performance in their students' vocabulary, whether in comprehension or production. In Iran, for example, even though mandatory English education begins at the age of 13, which is junior and senior high school, students still have serious problems in language production and comprehension when they reach university levels.

Details

Journal of Applied Research in Higher Education, vol. 16 no. 4
Type: Research Article
ISSN: 2050-7003

Keywords

Article
Publication date: 8 July 2024

Shambhu Sajith, R S Aswani, Mohammad Younus Bhatt and Anil Kumar

The purpose of this study is to identify Offshore Wind Energy (OWE) as a key technology that could drive countries toward achieving climate goals. However, there are multiple…

Abstract

Purpose

The purpose of this study is to identify Offshore Wind Energy (OWE) as a key technology that could drive countries toward achieving climate goals. However, there are multiple challenges that this sector faces.

Design/methodology/approach

This study aims to identify the challenges faced by the sector globally by systematically reviewing the existing literature in global context and portraying it in the Indian context. Factors are identified using content analysis.

Findings

Results suggest high levelized cost of energy as the most discussed challenge for the growth of OWE. Insufficient financial support and policy, initial capital and inadequate technology formed the second, third and fourth most discussed challenges respectively.

Research limitations/implications

To reduce the cost of OWE, the distribution companies in India could adopt feed-in tariffs (FiTs) in the early stages of development and make OWE procurement mandatory. The renewable purchase obligation (RPO) in India is specific to solar and non-solar; policy should accommodate offshore wind-specific RPO targets for each state to reach the 2030 target of 30 GW from OWE.

Practical implications

To the best of the authors’ knowledge, this is the first attempt to study the challenges of OWE development from a global perspective and portray these major challenges in the Indian context and uses content analysis from the existing literature to ascertain the major roadblocks for the development of OWE.

Originality/value

The study identifies the unexplored gap in literature that includes futuristic challenges for OWE from climate change. Future studies can explore the possibilities of forecasting based on climate change scenarios and rank the challenges based on their relevance caused by possible damages.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 10 of 951