Search results

1 – 10 of 15
Article
Publication date: 15 July 2024

Min Zhao, Wei He, Xiuyu He, Liang Zhang and Hongxue Zhao

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the…

Abstract

Purpose

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the flapping wings are crucial for the flight performance. The aim of this paper is to study the effects of different wings on aerodynamic performance.

Design/methodology/approach

Inspired by the wings structure of birds, the authors design four cambered wings to analyze the effect of airfoils on the FWAVs aerodynamic performance. The authors design the motor-driven mechanism of flapping wings, and realize the control of flapping frequency. Combined with the wind tunnel equipment, the authors build the FWAVs force test platform to test the static and dynamic aerodynamic performance of different flapping wings under the state variables of flapping frequency, wind speed and inclined angle.

Findings

The results show that the aerodynamic performance of flapping wing with a camber of 20 mm is the best. Compared with flat wing, the average lift can be improved by 59.5%.

Originality/value

Different from the traditional flat wing design of FWAVs, different cambered flapping wings are given in this paper. The influence of airfoils on aerodynamic performance of FWAVs is analyzed and the optimal flapping wing is obtained.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 September 2024

Suresh V., Kathiravan Balusamy and Senthilkumar Chidambaram

An experimental investigation of hemispherical forebody interaction effects on the drag coefficient of a D-shaped model is carried out for three-dimensional flow in the…

Abstract

Purpose

An experimental investigation of hemispherical forebody interaction effects on the drag coefficient of a D-shaped model is carried out for three-dimensional flow in the subcritical range of Reynolds number 1 × 105 ≤ Re ≤ 1.8 × 105. To study the interaction effect, hemispherical shapes of various sizes are attached to the upriver of the D-shaped bluff body model. The diameter of the hemisphere (b1) varied from 0.25 to 0.75 times the diameter of the D-shaped model (b2) and its gap from the D-shaped model (g/b2) ranged from 0.25 to 1.75 b2.

Design/methodology/approach

The experiments were carried out in a low-speed open-circuit closed jet wind tunnel with test section dimensions of 1.2 × 0.9 × 1.8 m (W × H × L) capable of generating maximum velocity up to 45 m/s. The wind tunnel is equipped with a driving unit which has a 175-hp motor with three propellers controlled by a 160-kW inverter drive. Drag force is measured with an internal six-component balance with the help of the Spider 3013 E-pro data acquisition system.

Findings

The wind tunnel results show that the hemispherical forebody has a diameter ratio of 0.75 with a gap ratio of 0.25, resulting in a maximum drag reduction of 67%.

Research limitations/implications

The turbulence intensity of the wind tunnel is about 5.6% at a velocity of 18 m/s. The uncertainty in the velocity and the drag coefficient measurement are about ±1.5 and ±2.83 %, respectively. The maximum error in the geometric model is about ±1.33 %.

ractical implications

The results from the research work are helpful in choosing the optimum spacing of road vehicles, especially truck–trailer and launch vehicle applications.

Social implications

Drag reduction of road vehicle resulting less fuel consumption as well as less pollution to the environment. For instance, tractor trailer experiencing approximately 45% of aerodynamics drag is due to front part of the vehicle. The other contributors are 30% due to trailer base and 25% is due to under body flow. Nearly 65% of energy was spent to overcome the aerodynamic drag, when the vehicle is traveling at the average of 70 kmph (Seifert 2008 and Doyle 2008).

Originality/value

The benefits of placing the forebody in front of the main body will have a strong influence on reducing fuel consumption.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 August 2024

Zeyad M. Manaa and Naef A.A. Qasem

This study aims to validate the linear flow theory with computational fluid dynamics (CFD) simulations and to propose a novel shape for the airfoil that will improve supersonic…

45

Abstract

Purpose

This study aims to validate the linear flow theory with computational fluid dynamics (CFD) simulations and to propose a novel shape for the airfoil that will improve supersonic aerodynamic performance compared to the National Advisory Committee for Aeronautics (NACA) 64a210 airfoil.

Design/methodology/approach

To design the new airfoil shape, this study uses a convex optimization approach to obtain a global optimal shape for an airfoil. First, modeling is conducted using linear flow theory, and then numerical verification is done by CFD simulations using ANSYS Fluent. The optimization process ensures that the new airfoil maintains the same cross-sectional area and thickness as the NACA 64a210 airfoil. This study found that an efficient way to obtain the ideal airfoil shape is by using linear flow theory, and the numerical simulations supported the assumptions inherent in the linear flow theory.

Findings

This study’s findings show notable improvements (from 4% to 200%) in the aerodynamic performance of the airfoil, especially in the supersonic range, which points to the suggested airfoil as a potential option for several fighter aircraft. Under various supersonic conditions, the optimized airfoil exhibits improved lift-over-drag ratios, leading to improved flight performance and lower fuel consumption.

Research limitations/implications

This study was conducted mainly for supersonic flow, whereas the subsonic flow is tested for a Mach number of 0.7. This study would be extended for both subsonic and supersonic flights.

Practical implications

Convex optimization and linear flow theory are combined in this work to create an airfoil that performs better in supersonic conditions than the NACA 64a210. By closely matching the CFD results, the linear flow theory's robustness is confirmed. This means that the initial design phase no longer requires extensive CFD simulations, and the linear flow theory can be used quickly and efficiently to obtain optimal airfoil shapes.

Social implications

The proposed airfoil can be used in different fighter aircraft to enhance performance and reduce fuel consumption. Thus, lower carbon emission is expected.

Originality/value

The unique aspect of this work is how convex optimization and linear flow theory were combined to create an airfoil that performs better in supersonic conditions than the NACA 64a210. Comprehensive CFD simulations were used for validation, highlighting the optimization approach's strength and usefulness in aerospace engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 August 2024

Xiaohui Xiong, Jiaxu Geng, Kaiwen Wang and Xinran Wang

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method…

Abstract

Purpose

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method with multiple tandem wings installed on the train roof.

Design/methodology/approach

The improved delayed detached eddy simulation method based on shear stress transport k- ω turbulence model has been used to conduct computational fluid dynamics simulation on the train with three different wing height layouts, at a Reynolds number of 2.8 × 106. The accuracy of the numerical method has been validated by wind tunnel experiments.

Findings

The wing height layout has a significant effect on the lift, while its influence on the drag is weak. There are three distinctive vortex structures in the flow field: wingtip vortex, train body vortex and pillar vortex, which are influenced by the variation in wing height layout. The incremental wing layout reduces the mixing and merging between vortexes in the flow field, weakening the vorticity and turbulence intensity. This enhances the pressure difference between the upper and lower surfaces of both the train and wings, thereby increasing the overall lift. Simultaneously, it reduces the slipstream velocity at platform and trackside heights.

Originality/value

This paper contributes to understanding the aerodynamic characteristics and flow structure of a high-speed train coupled with wings. It provides a reference for the design aiming to achieve equivalent weight reduction through aerodynamic lift synergy in trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 July 2024

Francisco Sánchez-Moreno, David MacManus, Fernando Tejero and Christopher Sheaf

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost…

Abstract

Purpose

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost. Consequently, the use of a numerical simulation approach can become prohibitive for some applications. This paper aims to propose a computationally efficient multi-fidelity method for the optimisation of two-dimensional axisymmetric aero-engine nacelles.

Design/methodology/approach

The nacelle optimisation approach combines a gradient-free algorithm with a multi-fidelity surrogate model. Machine learning based on artificial neural networks (ANN) is used as the modelling technique because of its ability to handle non-linear behaviour. The multi-fidelity method combines Reynolds-averaged Navier Stokes and Euler CFD calculations as high- and low-fidelity, respectively.

Findings

Ratios of low- and high-fidelity training samples to degrees of freedom of nLF/nDOFs = 50 and nHF/nDOFs = 12.5 provided a surrogate model with a root mean squared error less than 5% and a similar convergence to the optimal design space when compared with the equivalent CFD-in-the-loop optimisation. Similar nacelle geometries and aerodynamic flow topologies were obtained for down-selected designs with a reduction of 92% in the computational cost. This highlights the potential benefits of this multi-fidelity approach for aerodynamic optimisation within a preliminary design stage.

Originality/value

The application of a multi-fidelity technique based on ANN to the aerodynamic shape optimisation problem of isolated nacelles is the key novelty of this work. The multi-fidelity aspect of the method advances current practices based on single-fidelity surrogate models and offers further reductions in computational cost to meet industrial design timescales. Additionally, guidelines in terms of low- and high-fidelity sample sizes relative to the number of design variables have been established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 16 July 2024

Ruan du Rand, Kevin Jamison and Barbara Huyssen

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while…

Abstract

Purpose

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while adhering to onboard system constraints and fitment specifications.

Design/methodology/approach

Initial geometric layout determination used empirical methods. Performance approximation on the aircraft with added fairings and stabilising fin configurations was conducted using a panel code. Verification of loads was done using a full steady Reynolds-averaged Navier–Stokes solver, validated against published wind tunnel test data. Acceptable load envelope for the aircraft pylon was defined using two already-certified stores with known flight envelopes.

Findings

Re-lofting the pod’s geometry enabled meeting all geometric and pylon load constraints. However, due to the pod's large size, re-lofting alone was not adequate to respect aircraft/pylon load limitations. A flight restriction was imposed on the aircraft’s roll rate to reduce yaw and roll moments within allowable limits.

Practical implications

The geometry of an electronics pod was redesigned to maximise the permissible flight envelope on its carriage aircraft while respecting the safe carriage load limits determined for its store pylon. Aircraft carriage load constraints must be determined upfront when considering the design of fast-jet electronic pods.

Originality/value

A process for determining the unknown load constraints of a carriage aircraft by analogy is presented, along with the process of tailoring the geometry of an electronics pod to respect aerodynamic load and geometric constraints.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 August 2024

Wei Suo, Xuxiang Sun, Weiwei Zhang and Xian Yi

The purpose of this study is to establish a novel airfoil icing prediction model using deep learning with geometrical constraints, called geometrical constraints enhancement…

Abstract

Purpose

The purpose of this study is to establish a novel airfoil icing prediction model using deep learning with geometrical constraints, called geometrical constraints enhancement neural networks, to improve the prediction accuracy compared to the non-geometrical constraints model.

Design/methodology/approach

The model is developed with flight velocity, ambient temperature, liquid water content, median volumetric diameter and icing time taken as inputs and icing thickness given as outputs. To enhance the icing prediction accuracy, the model involves geometrical constraints into the loss function. Then the model is trained according to icing samples of 2D NACA0012 airfoil acquired by numerical simulation.

Findings

The results show that the involvement of geometrical constraints effectively enhances the prediction accuracy of ice shape, by weakening the appearance of fluctuation features. After training, the airfoil icing prediction model can be used for quickly predicting airfoil icing.

Originality/value

This work involves geometrical constraints in airfoil icing prediction model. The proposed model has reasonable capability in the fast assessment of aircraft icing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 August 2024

Yuhan Li, Qun Luo, Shiyu Zhao, Wenyan Qi, Zhong Huang and Guiming Mei

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to offer valuable insights for research concerning the adaptability of pantograph-catenary systems on double-stack high container transportation lines.

Design/methodology/approach

Eight pantograph models were formulated based on lines with the contact wire of 6,680 mm in height. The aerodynamic calculations were carried out using the SST k-ω separated vortex model. A more improved aerodynamic uplift force method was also presented. The change rule of the aerodynamic uplift force under different working heights of the pantograph was analyzed according to the transfer coefficients of the aerodynamic forces and moments.

Findings

The results show that the absolute values of the aerodynamic forces and moments of the upper and lower frame increase with the working height, whereas those of the collector head do not change. The absolute values of the transfer coefficients of the lower frame and link arm were significantly larger than those of the upper frame. Therefore, the absolute value of the aerodynamic uplift force increased and then decreased with the working height. The maximum value occurred at a working height of 2,400 mm.

Originality/value

A new method for calculating the aerodynamic uplift force of pantographs is proposed. The specifical change rule of the aerodynamic uplift force of the pantograph on double-stack high container transportation lines was determined from the perspective of the transfer coefficients of the aerodynamic forces and moments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2024

Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski and Krzysztof Rusin

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface…

Abstract

Purpose

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.

Design/methodology/approach

This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The k-ω SST turbulent model and Aupoix's roughness method are used for numerical simulations.

Findings

The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.

Originality/value

The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 July 2024

Anand Kumar Yadav, Hari Shankar Mahato, Sangeeta Kumari and Pawel Jurczak

This study aims to examine the plane wave reflection problem in micropolar orthotropic magneto-thermoelastic half space, considering the influence of impedance as a boundary in a…

Abstract

Purpose

This study aims to examine the plane wave reflection problem in micropolar orthotropic magneto-thermoelastic half space, considering the influence of impedance as a boundary in a nonlocal elasticity.

Design/methodology/approach

This study presents the novel formulation of governing partial differential equations for micropolar orthotropic medium with impact of nonlocal thermo-elasticity under magnetic field.

Findings

This study provides the numerical results validation for a particular numerical data and expression for the amplitude ratios of reflected waves and identifies the existence of four different waves, namely, quasi longitudinal displacement qCLD-wave, quasi thermal wave qCT-wave, quasi transverse displacement qCTD-wave and quasi-transverse micro-rotational qCTM-wave. The study derives the velocity equation giving the speed and phase velocity of these waves. The study also shows that the small-scale size effect gives significant impact on phase velocity.

Research limitations/implications

The graphical analysis examines the variation of speeds and coefficients of attenuation of these waves due to frequency, magnetic field and nonlocal parameters. Also, significant conclusions on the variation of reflection coefficient against nonlocal parameter, frequency, impedance parameter and angle of incidence are provided graphically.

Practical implications

The creation of more effective micropolar orthotropic anisotropic materials which are very useful in the daily life and their applications in earth science are greatly impacted by the findings of this study.

Originality/value

The authors of the submitted document initiated and produced it collectively, with equal contributions from all members.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 15