Search results

1 – 10 of over 84000
Article
Publication date: 1 March 2001

Carol S. Brinkman and Amanda M. Roubieu

In today’s academic library, the reference department relies heavily on computer workstations to provide patrons with access to reference sources in CD‐ROM and Web formats. Many…

5406

Abstract

In today’s academic library, the reference department relies heavily on computer workstations to provide patrons with access to reference sources in CD‐ROM and Web formats. Many reference departments also supervise an electronic classroom which is used to provide hands‐on instruction. Planning for the hardware, software, and peripherals necessary to provide patrons with access and training must be an ongoing process in order to keep up with rapid technological changes, both in computer hardware and software applications. Through the maintenance of comprehensive records of existing equipment, including the purpose, capabilities and maintenance of each item, information will be readily available for use in planning for computer equipment. In this article, the authors discuss various types of records that should be kept for computer equipment and how the information contained in these records can be applied to ongoing planning and decision making for management and maintenance.

Details

Reference Services Review, vol. 29 no. 1
Type: Research Article
ISSN: 0090-7324

Keywords

Article
Publication date: 8 May 2007

Thanapun Prasertrungruang and B.H.W. Hadikusumo

This study is intended to investigate the current practices and problems in heavy equipment management as well as to identify practices capable of alleviating equipment management…

1583

Abstract

Purpose

This study is intended to investigate the current practices and problems in heavy equipment management as well as to identify practices capable of alleviating equipment management problems for highway contractors in Thailand.

Design/methodology/approach

Equipment management practices were identified and analysed by SPSS using a questionnaire survey. ANOVA test was used to reveal significant differences in equipment management practices among different contractor sizes. Relationships between equipment management practices and problems were also revealed.

Findings

The equipment management practices vary, to some extent, among different contractor sizes. While practices of medium and small contractors tend to be similar, practices of large contractors are different from those of smaller contractors. Large contractors often put more emphasis on outsourcing strategy for equipment management. Moreover, large contractors frequently dispose of or replace equipment as soon as the equipment becomes inefficient before incurring high repair costs. Conversely, smaller contractors tend to mainly emphasise on the company finance and the budget availability as they often rely on purchasing strategy, especially buying used machines. Overall, equipment practices of large contractors were found to be more successful than smaller contractors in minimising equipment management problems, including long downtime duration and cost.

Originality/value

This research is of value for better understanding practices and problems relating to heavy equipment management among different contractor sizes. The study also highlights practices that are capable of reducing problems relating to heavy equipment management for highway contractors.

Details

Engineering, Construction and Architectural Management, vol. 14 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 May 2016

Anil Rana

The purpose of the paper is to provide a method for selection of an optimum level of repair by replacement of an equipment based on its cost. In a ship where the engineer has a…

Abstract

Purpose

The purpose of the paper is to provide a method for selection of an optimum level of repair by replacement of an equipment based on its cost. In a ship where the engineer has a vast variety of equipment and systems to operate and maintain within limited time frames and availability of human resources, it is often difficult to disassemble a whole equipment to replace a faulty component. It is instead a lot easier to just replace the faulty equipment with whole new equipment. However, such a decision comes at an enormous capital cost. Therefore, the key question is, can we have a model to help us arrive at a decision on the correct level of carrying out repairs?

Design/methodology/approach

The paper uses a model based on cost and convolution of failure distributions of critical sub-components of an equipment. Necessary assumptions based on real life experience have been incorporated in the model.

Findings

The paper used an example of a particular type of motor driven sea water centrifugal pump which was commonly used in main engine sea water system, firefighting system, air conditioning system, etc. The pump had one of the highest failure rates in the ship (approximately one failure per 150 days) and the engineers found it cost and time effective to replace the entire pump on failure rather than carrying out replacement of the failed components. The model analyzed that the engineer’s hunch was not off the mark.

Research limitations/implications

The implication of the work presented in the paper will be savings in maintenance cost and downtime due to optimal level of repairs on a multi-component equipment. The limitations of the work are assumption of independence of failures of components. This may not be true in all the cases. Further, opportunity based maintenance has also not been considered.

Originality/value

The originality of the paper lies in the presentation of a method for selection of an optimum level of maintenance for a multi-component equipment

Details

Journal of Quality in Maintenance Engineering, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 18 September 2007

Sri Beldona and Vernon E. Francis

To develop, test and implement a sampling strategy for equipment auditing for a Fortune 100 company.

3626

Abstract

Purpose

To develop, test and implement a sampling strategy for equipment auditing for a Fortune 100 company.

Design/methodology/approach

Regression analysis is applied to auditing of equipment for a large US corporation. Empirical data and test data sets are used to evaluate the efficacy of using regression for auditing and to determine reasonable and efficient sample sizes to be employed across more than 5,000 locations.

Findings

Regression is a viable and useful method for equipment auditing when there is anticipated high correlation between pre‐ and post‐audit equipment value. Recommended sample size is dependent upon the size of the location as measured by total pieces of equipment. Decision rules combining acceptable tolerance limits, desired confidence level and sample size are provided.

Research limitations/implications

The method, recommended sample sizes and decision rules are particularly applicable to instances where high correlation is expected between pre‐ and post‐audit equipment values. Standard regression assumptions are not all met in all instances, especially with small sample sizes.

Practical implications

The regression approach and model, sample size recommendations and decision rules for passing or failing an equipment audit described herein have been implemented at a Fortune 100 company, and are generally applicable to equipment and inventory auditing when high correlation between pre‐ and post‐audit equipment is expected.

Originality/value

This paper provides a practical and useful regression‐based approach to sampling for equipment auditing. Recommended sample sizes and decision rules for passing or failing the audit are explicitly defined.

Details

Managerial Auditing Journal, vol. 22 no. 8
Type: Research Article
ISSN: 0268-6902

Keywords

Article
Publication date: 26 October 2012

Hong‐fa Ke, Hong‐Mei Du, Ke He and Xiao‐Hong Yu

The purpose of this paper is to solve the comprehensive evaluation of the equipment maintainability level based on grey system theory, and make an analysis of the corresponding…

421

Abstract

Purpose

The purpose of this paper is to solve the comprehensive evaluation of the equipment maintainability level based on grey system theory, and make an analysis of the corresponding influencing factors and their prioritization process.

Design/methodology/approach

Considering the diversity, uncertainty and small sample size of the influencing factors of the equipment maintainability level, a multilayer evaluation attribute system is set up, and the grey relational method is utilized to assess the equipment's comprehensive maintainability. First, the bottom layer relational coefficient and weighted relational degree are analyzed, and, by means of the focus of relational degree through the bottom layer to top layer, the general evaluation of the equipment maintainability is carried out. Second, the equipment maintainability level and its influencing factors model, i.e. GM(1,N) model are set up, and the prioritization of the influencing factors is achieved through the comparison of the size of the model drive coefficients. Finally, the practical example calculation results show that this method has not only realized a sensible and effective evaluation of the equipment maintainability level, but also provided a prioritization of the influencing factors, which helps to focus attention on the major influencing factors and make this method of significant engineering application value in the improvement of the equipment maintainability level.

Findings

The modeling of electronic equipment maintainability level and analysis of its corresponding practical example prove that grey system theory could not only perform a comprehensive evaluation of the equipment maintainability level, but also provide a quantitative analysis of its various influencing factors, whereas, other methods such as fuzzy mathematics, etc. can only make a general evaluation of the equipment maintainability level.

Practical implications

This paper has realized an integral evaluation of the equipment maintainability level and has made an analysis of the prioritization of its various influencing factors. These investigation results could be introduced as a promising innovative idea in the evaluation of the equipments' other performances and the prioritization of its various corresponding influencing factors.

Originality/value

Considering the diversity and uncertainty of influencing factors of the equipment maintainability level, this paper has realized a multilayer evaluation attribute system to perform a comprehensive evaluation of equipment maintainability level by means of weighted grey relational degree model. Furthermore, the prioritization of its various influencing factors is achieved based on the GM(1,N) model.

Details

Grey Systems: Theory and Application, vol. 2 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 30 November 2023

Wenbo Li, Bin Dan, Xumei Zhang, Yi Liu and Ronghua Sui

With the rapid development of the sharing economy in manufacturing industries, manufacturers and the equipment suppliers frequently share capacity through the third-party…

Abstract

Purpose

With the rapid development of the sharing economy in manufacturing industries, manufacturers and the equipment suppliers frequently share capacity through the third-party platform. This paper aims to study influences of manufacturers sharing capacity on the supplier and to analyze whether the supplier shares capacity as well as its influences.

Design/methodology/approach

This paper deals with conditions that the supplier and manufacturers share capacity through the third-party platform, and the third-party platform competes with the supplier in equipment sales. Considering the heterogeneity of the manufacturer's earning of unit capacity usage and the production efficiency of manufacturer's usage strategies, this paper constructs capacity sharing game models. Then, model equilibrium results under different sharing scenarios are compared.

Findings

The results show that when the production or maintenance cost is high, manufacturers sharing capacity simultaneously benefits the supplier, the third-party platform and manufacturers with high earnings of unit capacity usage. When both the rental efficiency and the production cost are low, or both the rental efficiency and the production cost are high, the supplier simultaneously sells equipment and shares capacity. The supplier only sells equipment in other cases. When both the rental efficiency and the production cost are low, the supplier’s sharing capacity realizes the win-win-win situation for the supplier, the third-party platform and manufacturers with moderate earnings of unit capacity usage.

Originality/value

This paper innovatively examines supplier's selling and sharing decisions considering manufacturers sharing capacity. It extends the research on capacity sharing and is important to supplier's operational decisions.

Details

Industrial Management & Data Systems, vol. 124 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 13 November 2023

Meifang Li and Yujing Liu

With the deep development of the new technological revolution and industrial transformation, the development, application, expansion and integration of digital technology provide…

Abstract

Purpose

With the deep development of the new technological revolution and industrial transformation, the development, application, expansion and integration of digital technology provide opportunities for transforming the manufacturing industry from traditional manufacturing to intelligent manufacturing. However, little research currently focuses on analyzing the influencing factors of intelligent development in this field. There is a lack of research from the perspective of the digital innovation ecosystem to explore the intrinsic mechanism that drives intelligent development. Therefore, this article starts with high-end equipment manufacturing enterprises as the research subject to explore how their digital innovation ecosystem promotes the effectiveness of enterprise intelligent development, providing theoretical support and policy guidance for enterprises to achieve intelligent development at the current stage.

Design/methodology/approach

This article constructs a logical framework for the digital innovation ecosystem using a “three-layer core-periphery” structure, collects data using crawling for subsequent indicator measurement and assessment and uses the fuzzy set Qualitative Comparative Analysis method (fsQCA) to explore how the various components of the digital innovation ecosystem in high-end equipment manufacturing enterprises work together to promote the development of enterprise intelligently.

Findings

This article finds that the various components of the digital innovation ecosystem of high-end equipment manufacturing enterprises, through mutual coordination, can help improve the level of enterprise intelligence. Empirical analysis shows four specific configuration implementation paths for the digital innovation ecosystem of high-end equipment manufacturing enterprises to promote intelligent development. The core conditions and their combinations that affect the intelligent development of enterprises differ in each configuration path.

Originality/value

Firstly, this article discusses the practical problems of intelligent transformation and development in the manufacturing industry and focuses on the intelligent development effectiveness of various components of the digital innovation ecosystem of high-end equipment manufacturing enterprises in the context of digitalization. Secondly, this article uses crawling, text sentiment analysis and other methods to creatively collect relevant data to overcome the research dilemma of being limited to theoretical analysis due to the difficulty in obtaining data in this field. At the same time, based on the characteristics of high-end equipment manufacturing enterprises, the “three-layer core-periphery” digital innovation ecosystem framework constructed in this article helps to gain a deep understanding of the development characteristics of the industry's enterprises, provides specific indicator analysis for their intelligent development, opening the “black box” of intelligent development in the industry's enterprises and bridging the gap between theory and practice. Finally, this study uses the fsQCA research method of configuration analysis to explore the complexity of the antecedents and investigate the combined effects of multiple factors on intelligent development, providing new perspectives and rich research results for relevant literature on the intelligent development of high-end equipment manufacturing enterprises.

Details

Business Process Management Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1463-7154

Keywords

Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

1739

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 7 June 2023

Debadyuti Das and Aditya Singh

The present work seeks to determine the optimal delivery schedule of equipment at a project site in the backdrop of limited storage space, at a minimum cost, and without…

Abstract

Purpose

The present work seeks to determine the optimal delivery schedule of equipment at a project site in the backdrop of limited storage space, at a minimum cost, and without disturbing the overall project schedule. In addition, the optimized delivery schedule helps in minimizing the fluctuating requirements of space at the project site across the entire project lifespan.

Design/methodology/approach

The study is carried out at a Steel plant operating in a constrained space but undergoing a production capacity expansion. The problem motivated us to explore the possibility of postponing the delivery dates of certain equipment closer to the erection dates without compromising on the project schedule. Given the versatility of linear programming models in dealing with such schedule optimization problems, the authors formulated the above problem as a Zero-One Integer Linear Programming problem.

Findings

The model is implemented for all the new equipment arriving for two major units – the Hot Strip Mill (HSM) and the Blast Furnace (BF). It generates an optimized delivery schedule by delaying the delivery of some equipment by a certain number of periods, without compromising the overall project schedule and at a minimum storage cost. The average space utilization increases by 25.85 and 14.79% in HSM and BF units respectively. The fluctuations in space requirements are reduced substantially in both units.

Originality/value

The study shows a timeline in the form of a Gantt chart for the delivery of equipment, storage of equipment across different periods, and the number of periods for which the delivery of certain equipment needs to be postponed. The study uses linearly increasing storage costs with the increase in the number of periods for storage of the equipment in the temporary shed.

Highlights

  1. Determined the optimal delivery schedule of the equipment in a project environment in the backdrop of limited storage space in the project site.

  2. Formulated the above problem as a Zero-One Integer Linear Programming (ILP) problem.

  3. The average space utilization has increased by 25.85 and 14.79% in HSM and BF units respectively.

  4. The optimized delivery schedule helps in reducing the fluctuations in space requirements substantially across the entire lifespan of the project.

  5. The timeline of delivery of equipment, storage of equipment across different periods and periods of postponement of the equipment are shown in the form of a Gantt Chart.

Determined the optimal delivery schedule of the equipment in a project environment in the backdrop of limited storage space in the project site.

Formulated the above problem as a Zero-One Integer Linear Programming (ILP) problem.

The average space utilization has increased by 25.85 and 14.79% in HSM and BF units respectively.

The optimized delivery schedule helps in reducing the fluctuations in space requirements substantially across the entire lifespan of the project.

The timeline of delivery of equipment, storage of equipment across different periods and periods of postponement of the equipment are shown in the form of a Gantt Chart.

Details

Journal of Advances in Management Research, vol. 20 no. 5
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 29 August 2023

Hongyan Zhu, Pengzhen Lv, Xiaochong Wu, Yuansheng Wang, Wei Liu, Huagang Lin and Zhufeng Yue

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Abstract

Purpose

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Design/methodology/approach

First, the vibration isolation law of the discrete model of large airborne equipment under different damping ratios, stiffness ratios and mass ratios is analyzed, which guides the establishment of a three-dimensional solid model of large airborne equipment. Subsequently, the vibration isolation transfer efficiency is analyzed based on the three-dimensional model of the airborne equipment, and the angular and linear vibration responses of the two-stage vibration isolation system under different frequencies are studied.

Findings

Finally, studies have shown that the steady-state angular vibration at the non-resonant frequency changes little. In contrast, the maximum angular vibration at the resonance peak reaches 0.0033 rad, at least 20 times the response at the non-resonant frequency. The linear vibration at the resonant frequency is at least 2.14 times the response at the non-resonant frequency. Obviously, the amplification factor of linear vibration is less than that of angular vibration, and angular vibration has the most significant effect on the internal vibration of airborne equipment.

Originality/value

The two-stage vibration isolation equipment designed in this paper has a positive guiding significance for the vibration isolation design of large airborne equipment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 84000