Search results

1 – 5 of 5
Open Access
Article
Publication date: 28 June 2024

Ebere Donatus Okonta and Farzad Rahimian

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to…

Abstract

Purpose

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to address the significant emissions from building fabrics which pose a threat to achieving these targets if not properly addressed.

Design/methodology/approach

The study, based on a literature review and ten (10) case studies, explored five investigative approaches for evaluating building fabric: thermal imaging, in situ U-value testing, airtightness testing, energy assessment and condensation risk analysis. Cross-case analysis was used to evaluate both case studies using each approach. These methodologies were pivotal in assessing buildings’ existing condition and energy consumption and contributing to the UK’s net-zero ambitions.

Findings

Findings reveal that incorporating the earlier approaches into the building fabric showed great benefits. Significant temperature regulation issues were identified, energy consumption decreased by 15% after improvements, poor insulation and artistry quality affected the U-values of buildings. Implementing retrofits such as solar panels, air vents, insulation, heat recovery and air-sourced heat pumps significantly improved thermal performance while reducing energy consumption. Pulse technology proved effective in measuring airtightness, even in extremely airtight houses, and high airflow and moisture management were essential in preserving historic building fabric.

Originality/value

The research stresses the need to understand investigative approaches’ strengths, limitations and synergies for cost-effective energy performance strategies. It emphasizes the urgency of eliminating carbon dioxide (CO2) and greenhouse gas emissions to combat global warming and meet the 1.5° C threshold.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Article
Publication date: 23 September 2024

Pedro Mêda, Eilif Hjelseth, Diego Calvetti and Hipólito Sousa

This study explores the significance and implementation priorities for Digital Product Passports (DPP) in the context of building renovation projects. It aims to reveal…

Abstract

Purpose

This study explores the significance and implementation priorities for Digital Product Passports (DPP) in the context of building renovation projects. It aims to reveal bottlenecks and how a data-driven workflow bridges the DPP understanding/implementation gap, facilitating the transition towards practices aligned with the EU Green Deal goals.

Design/methodology/approach

A mixed-methods embedded design was employed for a real-case study exploration. Desk research and field observations ground the two-level analysis combining project documentation, namely the Bill of Quantities (BoQ), with different criteria in digitalisation and sustainability, such as economic ratio, 3D modelling, waste management, hazards, energy performance and facility management. All results were interpreted from the DPP lens.

Findings

The analysis revealed a system for identifying building products representing a significant part of the renovation budget. About 11 priority DPPs were found. Some are crucial for both the deconstruction and construction phases, highlighting the need for an incremental and strategic approach to DPP implementation.

Research limitations/implications

The study is limited to a single case study. Constraints are minimised given the sample's archetype representativeness. The outcomes introduce the need for strategic thinking for incremental DPP implementation. Future research will explore additional criteria and cases.

Originality/value

The research has resulted in a classification framework for DPPs' significance and priority, which is provided with case results. The outcome of the framework provides views on concept alignment to make the implementation in construction more straightforward. Its practical use can be replicated in other projects, emphasizing the importance of data structure and management for the circular economy.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1308

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 28 February 2023

Jan Marais Hugo and Paul Walter Sonnendecker

The adverse impacts of climate change coupled with rapid informal urbanization in the Southern African region are increasing the vulnerability of already sensitive population…

1585

Abstract

Purpose

The adverse impacts of climate change coupled with rapid informal urbanization in the Southern African region are increasing the vulnerability of already sensitive population groups. Consequently, these urban regions are highly vulnerable to urban heat island effects and heatwaves due to exogenous and endogenous factors. While the dynamic interplay between the built environment, climate and response strategies is known, this paper highlights the lived experience of informal settlement residents. It presents work from a project undertaken in Melusi, an informal settlement in Tshwane, South Africa, as a multi-disciplinary project focusing on improving the local resilience to climate change associated heat stress.

Design/methodology/approach

Following a mixed method approach, a semi-structured observational analysis of the spatial layout and material articulation of selected dwellings along with the continuous monitoring and recording of their indoor environments were undertaken.

Findings

The paper presents the research results in terms of the dwelling characteristics, as spatial and material-use strategies and documented heat stress exposure in these structures. The findings highlight that informal dwellings perform poorly in all cases due to endogenous factors and that inhabitants experience extreme heat stress conditions for between 6 and 10 h daily during the peak summer period.

Originality/value

Currently, there are little empirical data on the heat stress residents living in informal settlements in Southern Africa are experiencing. This article provides insight into the indoor environments of informal dwellings and hopes to contribute future guidelines or heat health policies.

Details

Smart and Sustainable Built Environment, vol. 13 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 16 July 2024

Fehid Ishtiaq, R. Ellahi, M.M. Bhatti and Sadiq M. Sait

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More…

Abstract

Purpose

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More specifically, the directed and rhythmic beat of motile cilia facilitates the unidirectional flow of fluids that are crucial in both homeostasis and the development of ciliated tissues. In cilia-dependent hydrodynamic flows, tapering geometries look a lot like the structure of biological pathways and vessels, like airways and lymphatic vessels. In this paper, the Carreau fluid model through the cilia-assisted tapered channel (asymmetric) under the influence of induced magnetic field and convective heat transfer is investigated.

Design/methodology/approach

Lubrication theory is a key player in the mathematical formulation of momentum, magnetic field and energy equations. The formulated nonlinear and coupled differential equations are solved with the aid of the homotopy perturbation method (HPM). The graphical results are illustrated with the help of the computational software “Mathematica.”

Findings

The impact of diverse emerging physical parameters on velocity, induced magnetic field, pressure rise, current density and temperature profiles is presented graphically. It is observed that the cilia length parameter supported the velocity and current density profiles, while the Hartman number and Weissenberg number were opposed. A promising effect of emerging parameters on streamlines is also perceived.

Originality/value

The study provides novel aspects of cilia-driven induced magnetohydrodynamics flow of Carreau fluid under the influence of induced magnetic field and convective heat transfer through the asymmetric tapered channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 5 of 5