Search results

1 – 10 of over 1000
Article
Publication date: 3 September 2024

Jaya Choudhary, Mangey Ram and Ashok Singh Bhandari

This research introduces an innovation strategy aimed at bolstering the reliability of a renewable energy resource, which is hybrid energy systems, through the application of a…

Abstract

Purpose

This research introduces an innovation strategy aimed at bolstering the reliability of a renewable energy resource, which is hybrid energy systems, through the application of a metaheuristic algorithm. The growing need for sustainable energy solutions underscores the importance of integrating various energy sources effectively. Concentrating on the intermittent characteristics of renewable sources, this study seeks to create a highly reliable hybrid energy system by combining photovoltaic (PV) and wind power.

Design/methodology/approach

To obtain efficient renewable energy resources, system designers aim to enhance the system’s reliability. Generally, for this purpose, the reliability redundancy allocation problem (RRAP) method is utilized. The authors have also introduced a new methodology, named Reliability Redundancy Allocation Problem with Component Mixing (RRAP-CM), for optimizing systems’ reliability. This method incorporates heterogeneous components to create a nonlinear mixed-integer mathematical model, classified as NP-hard problems. We employ specially crafted metaheuristic algorithms as optimization strategies to address these challenges and boost the overall system performance.

Findings

The study introduces six newly designed metaheuristic algorithms. Solve the optimization problem. When comparing results between the traditional RRAP method and the innovative RRAP-CM method, enhanced reliability is achieved through the blending of diverse components. The use of metaheuristic algorithms proves advantageous in identifying optimal configurations, ensuring resource efficiency and maximizing energy output in a hybrid energy system.

Research limitations/implications

The study’s findings have significant social implications because they contribute to the renewable energy field. The proposed methodologies offer a flexible and reliable mechanism for enhancing the efficiency of hybrid energy systems. By addressing the intermittent nature of renewable sources, this research promotes the design of highly reliable sustainable energy solutions, potentially influencing global efforts towards a more environmentally friendly and reliable energy landscape.

Practical implications

The research provides practical insights by delivering a comprehensive analysis of a hybrid energy system incorporating both PV and wind components. Also, the use of metaheuristic algorithms aids in identifying optimal configurations, promoting resource efficiency and maximizing reliability. These practical insights contribute to advancing sustainable energy solutions and designing efficient, reliable hybrid energy systems.

Originality/value

This work is original as it combines the RRAP-CM methodology with six new robust metaheuristics, involving the integration of diverse components to enhance system reliability. The formulation of a nonlinear mixed-integer mathematical model adds complexity, categorizing it as an NP-hard problem. We have developed six new metaheuristic algorithms. Designed specifically for optimization in hybrid energy systems, this further highlights the uniqueness of this approach to research.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Open Access
Article
Publication date: 30 July 2024

Thabo Khafiso, Clinton Aigbavboa and Samuel Adeniyi Adekunle

This study aims to examine the challenges in the implementation of energy management systems in residential buildings to lower the running cost and achieve a better…

Abstract

Purpose

This study aims to examine the challenges in the implementation of energy management systems in residential buildings to lower the running cost and achieve a better energy-efficient building.

Design/methodology/approach

This study adopted a mixed research method. Quantitative data was gathered by issuing a research questionnaire to 20 Delphi experts, while qualitative data was acquired through a Systematic Literature Review. Data received was analyzed using the descriptive analysis method.

Findings

The findings revealed that the main barriers to incorporating energy management systems (EMSs) in residential buildings consist of a lack of awareness of energy management systems, lack of management commitment to energy management, lack of knowledge about energy management systems, lack of funds for energy management systems, resistance to energy management technology by the property owners and property managers, distrust and resistance to energy management technology by the property owners, high initial cost of energy management technologies, shortage of technicians for energy management technologies, the nonexistence of local manufacturers of energy management equipment, lack of incentives for efficient energy management and high repair costs of energy management technologies.

Research limitations/implications

The specific focus on residential buildings may limit the applicability of findings to commercial or industrial sectors. Further research is warranted to accommodate other energy-consuming sectors.

Practical implications

People’s perceptions, either wrong or correct, affect their ability to make an informed decision to adopt energy management systems, denying them the opportunity to reap the associated benefits. Therefore, there is an urgent need for the residential industry stakeholders and the government to increase educational opportunities for property owners, managers and property tenants on the importance of energy management systems.

Originality/value

This research presents the potential obstacles and problematic areas that residents may encounter while using these energy management systems. Consequently, they will be able to make a well-informed choice when installing energy management systems. Moreover, the research elucidates the identification of novel perspectives and also unexamined obstacles that impede the widespread use of energy management systems in residential buildings.

Details

Facilities , vol. 42 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 30 August 2024

Ioan Mihangel Charnley-Parry, Elias Keller, Ivan Sebalo, John Whitton, Linden J. Ball, Beth Helen Richardson and John E. Marsh

Nuclear energy is a contested topic, requiring trade-offs in energy independence, ethicality and uncertainty. Anthropogenic climate change complicates these decisions further…

Abstract

Purpose

Nuclear energy is a contested topic, requiring trade-offs in energy independence, ethicality and uncertainty. Anthropogenic climate change complicates these decisions further, with nuclear energy competing with other low-carbon and sustainable energy sources. Decisions about nuclear energy’s role, as part of a sustainable energy system, must be made in cooperation with all stakeholders. However, it is unclear how the public is involved in these decisions in the UK. This study aims to address this gap, exploring the degree to which public participation has occurred in the UK.

Design/methodology/approach

This paper conducted a scoping review of public participation in UK nuclear energy decision-making in the context of sustainable energy transitions, where the government retains and promotes nuclear energy as part of a sustainable energy system. Following a systematic literary search, this paper reviewed 28 academic and grey literature documents.

Findings

Public participation has primarily been conducted as consultations rather than active participation. There is limited evidence that consultations have meaningfully contributed to politically and socially responsible (i.e. individuals and groups working together for community benefit) decision-making, with public opinion on nuclear energy’s role being divided and is influenced by how it is framed.

Originality/value

Social aspects of nuclear energy development have historically received less attention than environmental and economic elements; the role of engagement and participation is relatively rare. Modern literature reviews in this context are largely absent, a gap this paper originally contribute to. This paper suggest ways in which how effective, inclusive engagement process could contribute to a fairer, responsible decision-making process and energy system in the UK.

Details

Journal of Responsible Production and Consumption, vol. 1 no. 1
Type: Research Article
ISSN: 2977-0114

Keywords

Article
Publication date: 28 August 2024

Aqsa Anjum and Mohammad Subhan

The study investigates the intention of adopting solar panels and incorporating renewable energy sources into the electrical mix, providing insightful information on the nuances…

Abstract

Purpose

The study investigates the intention of adopting solar panels and incorporating renewable energy sources into the electrical mix, providing insightful information on the nuances of this critical topic.

Design/methodology/approach

The study used online and offline surveys to gather information on rooftop solar panels from Indian homes. To get reliable findings, the collected responses were analyzed using structural equation modeling using Smart PLS version 3.5 and SPSS version 23.0.

Findings

The research examines sustainability difficulties, psychological issues and demographic considerations, yielding a variety of conclusions. Low compatibility and high perceived cost have a detrimental influence on adoption intentions, emphasizing the importance of integrating consumer perceptions with technology while addressing cost concerns. Conversely, relative advantage, awareness, environmental concern, facilitating conditions and observability positively influenced the adoption.

Practical implications

The study underscores the importance of highlighting benefits, raising awareness, providing necessary resources and showcasing visible instances of technology use. By revealing the connection between different factors, the study offers a roadmap for policymakers and stakeholders to accelerate the transition toward sustainable energy practices.

Originality/value

To the best of the authors' knowledge, this study is one of the first to propose an integration of the Theory of Planned Behavior (TPB), the Diffusion of Innovations Theory (DOI) and the Unified Theory of Acceptance and Use of Technology (UTAUT), alongside various independent variables. The research offers a comprehensive perspective on factors that facilitate and obstruct the usage of solar energy.

Article
Publication date: 18 September 2024

David Díaz Jiménez, José Luis López Ruiz, Jesús González Lama and Ángeles Verdejo Espinosa

The main objective of the study is to address the lack of sustainability assessments of smart connected health systems in the academic literature by presenting an assessment model…

Abstract

Purpose

The main objective of the study is to address the lack of sustainability assessments of smart connected health systems in the academic literature by presenting an assessment model to determine the alignment of these systems with the 17 Sustainable Development Goals (SDGs) proposed in the 2030 Agenda.

Design/methodology/approach

An evaluation model based on decision analysis is proposed that includes three phases: alignment framework, information gathering and assessment. This model measures the alignment of the connected health system with each of the 17 SDGs, identifying the goals and criteria associated with each SDG that the system achieves to satisfy.

Findings

The analysis reveals that the system has achieved more than 24% of the targets among the 17 SDGs. In addition, it identifies four sustainability challenges that the system potentially addresses in relation to the SDGs, providing valuable guidance for researchers and practitioners interested in sustainable health technology development.

Practical implications

The study's results have significant implications for policymakers and stakeholders in the health and technology sectors.

Originality/value

The originality of this study lies in its comprehensive approach to assessing the sustainability of connected health systems in the context of the SDGs, filling an important gap in the existing literature.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 9 May 2024

Nabila As’ad, Lia Patrício, Kaisa Koskela-Huotari and Bo Edvardsson

The service environment is becoming increasingly turbulent, leading to calls for a systemic understanding of it as a set of dynamic service ecosystems. This paper advances this…

1240

Abstract

Purpose

The service environment is becoming increasingly turbulent, leading to calls for a systemic understanding of it as a set of dynamic service ecosystems. This paper advances this understanding by developing a typology of service ecosystem dynamics that explains the varying interplay between change and stability within the service environment through distinct behavioral patterns exhibited by service ecosystems over time.

Design/methodology/approach

This study builds upon a systematic literature review of service ecosystems literature and uses system dynamics as a method theory to abductively analyze extant literature and develop a typology of service ecosystem dynamics.

Findings

The paper identifies three types of service ecosystem dynamics—behavioral patterns of service ecosystems—and explains how they unfold through self-adjustment processes and changes within different systemic leverage points. The typology of service ecosystem dynamics consists of (1) reproduction (i.e. stable behavioral pattern), (2) reconfiguration (i.e. unstable behavioral pattern) and (3) transition (i.e. disrupting, shifting behavioral pattern).

Practical implications

The typology enables practitioners to gain a deeper understanding of their service environment by discerning the behavioral patterns exhibited by the constituent service ecosystems. This, in turn, supports them in devising more effective strategies for navigating through it.

Originality/value

The paper provides a precise definition of service ecosystem dynamics and shows how the identified three types of dynamics can be used as a lens to empirically examine change and stability in the service environment. It also offers a set of research directions for tackling service research challenges.

Details

Journal of Service Management, vol. 35 no. 6
Type: Research Article
ISSN: 1757-5818

Keywords

Article
Publication date: 5 September 2024

Alka Rai and Sunil Maheshwari

Taking instances from extant findings from the literature, the study aims to examine the community perception toward renewable energy (RE) off-grid (mini-grid/microgrid…

Abstract

Purpose

Taking instances from extant findings from the literature, the study aims to examine the community perception toward renewable energy (RE) off-grid (mini-grid/microgrid) intervention, the underlying rationales for engagement of communities in RE off-grid projects, the different alternatives/models to engage communities in various phases of RE off-grid project deployment.

Design/methodology/approach

The study has followed the structured literature review to explore the identified research question of the study.

Findings

Based on findings from the review, the framework for effective community engagement in RE mini-grid projects is suggested. Furthermore, the study also draws suggestions and implications for future research and practice.

Practical implications

Based on such understanding the present study offers the framework which suggests the steps for the engagement of the communities in the off-grid projects. The key steps are managing the perception of the community (including generation of awareness among the community), planning for the benefits of the community, linkage the sustainable development goals (SDG), planning for the inclusion of the community and measuring performance (in the line of social and economic criteria and SDG).

Originality/value

This study finds the gap in the literature on the nexus of community, off-grid energy projects and SDG. Following the findings from the scholars in this field, a few gaps in the policy and practice have been highlighted which could be useful for practitioners and policymakers in this area.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 13 September 2024

A.M. Obalalu, E.O. Fatunmbi, J.K. Madhukesh, S.H.A.M. Shah, Umair Khan, Anuar Ishak and Taseer Muhammad

Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through…

Abstract

Purpose

Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through sunlight absorption, acting as the primary source of heat. Various solar technologies, such as solar water heating and photovoltaic cells, rely on solar energy for heat generation. This study focuses on investigating heat transfer mechanisms by utilizing a hybrid nanofluid within a parabolic trough solar collector (PTSC) to advance research in solar ship technology. The model incorporates multiple effects that are detailed in the formulation.

Design/methodology/approach

The mathematical model is transformed using suitable similarity transformations into a system of higher-order nonlinear differential equations. The model was solved by implementing a numerical procedure based on the Wavelets and Chebyshev wavelet method for simulating the outcome.

Findings

The velocity profile is reduced by Deborah's number and velocity slip parameter. The Ag-EG nanoparticles mixture demonstrates less smooth fluid flow compared to the significantly smoother fluid flow of the Ag-Fe3O4/EG hybrid nanofluids (HNFs). Additionally, the Ag-Ethylene Glycol nanofluids (NFs) exhibit higher radiative performance compared to the Ag-Fe3O4/Ethylene Glycol hybrid nanofluids (HNFs).

Practical implications

Additionally, the Oldroyd-B hybrid nanofluid demonstrates improved thermal conductivity compared to traditional fluids, making it suitable for use in cooling systems and energy applications in the maritime industry.

Originality/value

The originality of the study lies in the exploration of the thermal transport enhancement in sun-powered energy ships through the incorporation of silver-magnetite hybrid nanoparticles within the heat transfer fluid circulating in parabolic trough solar collectors. This particular aspect has not been thoroughly researched previously. The findings have been validated and provide a highly positive comparison with the research papers.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 August 2024

H. Thameem Basha, Hyunju Kim and Bongsoo Jang

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or…

Abstract

Purpose

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or retrieval of energy occurs through the heating or cooling of either a liquid or a solid, without undergoing a phase change, within a sensible heat storage system. In a sensible packed bed thermal energy storage system, the structure comprises porous media that form the packed solid material, while fluid occupies the voids. Thus, a cavity, partially filled with a fluid layer and partially with a saturated porous layer, has become important in the investigation of natural convection heat transfer, carrying significant relevance within thermal energy storage systems. Motivated by these insights, the current investigation delves into the convection heat transfer driven by buoyancy and entropy generation within a partially porous cavity that is differentially heated, vertically layered and filled with a hybrid nanofluid.

Design/methodology/approach

The investigation encompasses two distinct scenarios. In the first instance, the porous layer is positioned next to the heated wall, while the opposite region consists of a fluid layer. In the second case, the layers switch places, with the fluid layer adjacent to the heated wall. The system of equations for fluid and porous media, along with appropriate initial and boundary conditions, is addressed using the finite difference method. The Tiwari–Das model is used in this investigation, and the viscosity and thermal conductivity are determined using correlations specific to spherical nanoparticles.

Findings

Comprehensive numerical simulations have been performed, considering controlling factors such as the Darcy number, nanoparticle volume fraction, Rayleigh number, bottom slit position and Hartmann number. The visual representation of the numerical findings includes streamlines, isotherms and entropy lines, as well as plots illustrating average entropy generation and the average Nusselt number. These representations aim to provide insight into the influence of these parameters across a spectrum of scenarios.

Originality/value

The computational outcomes indicate that with an increase in the Darcy number, the addition of 2.5% magnetite nanoparticles to the GO nanofluid results in an enhanced heat transfer rate, showing increases of 0.567% in Case 1 and 3.894% in Case 2. Compared with Case 2, Case 1 exhibits a 59.90% enhancement in heat transfer within the enclosure. Positioning the porous layer next to the partially cooled wall significantly boosts the average total entropy production, showing a substantial increase of 11.36% at an elevated Rayleigh number value. Positioning the hot slit near the bottom wall leads to a reduction in total entropy generation by 33.20% compared to its placement at the center and by 33.32% in comparison to its proximity to the top wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2024

Yunhai Liu, Penghui Xu, Xiaohua Zhu, Ligao Liu, Bo Li and Qingquan Li

Two friction models of Fe-Fe and Diamond-like carbon (DLC)-Fe were established by molecular dynamics (MD) method to simulate the friction behavior of traditional fracturing pump…

Abstract

Purpose

Two friction models of Fe-Fe and Diamond-like carbon (DLC)-Fe were established by molecular dynamics (MD) method to simulate the friction behavior of traditional fracturing pump plunger and new DLC plunger from atomic scale. This paper aims to investigate the effects of temperature and load on the friction behavior between sealed nitrile butadiene rubber (NBR) and DLC films.

Design/methodology/approach

In this study, MD method is used to investigate the friction behavior and mechanism of DLC film on plungers and sealing NBR based on Fe-Fe system and DLC-Fe system.

Findings

The results show that the friction coefficient of DLC-Fe system exhibits a downward trend with increasing load and temperature. And even achieve a superlubricity state of 0.005 when the load is 1 GPa. Further research revealed that the low interaction energy between DLC and NBR promoted the proportion of atoms with larger shear strain in NBR matrix and the lower Fe layer in DLC-Fe system to be much lower than that in Fe-Fe system. In addition, the application of DLC film can effectively inhibit the temperature rise of friction interface, but will occur relatively large peak velocity.

Originality/value

In this paper, two MD models were established to simulate the friction behavior between fracturing pump plunger and sealing rubber. Through the analysis of mean square displacement, atomic temperature, velocity and Interaction energy, it can be seen that the application of DLC film has a positive effect on reducing the friction of NBR.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000