Search results

1 – 10 of over 6000
Open Access
Article
Publication date: 22 March 2024

Abdul Rauf, Daniel Efurosibina Attoye and Robert H. Crawford

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received…

Abstract

Purpose

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received little attention. We aimed to address this knowledge gap, particularly in the context of the UAE and investigated the embodied energy associated with the use of concrete and other materials commonly used in residential buildings in the hot desert climate of the UAE.

Design/methodology/approach

Using input–output based hybrid analysis, we quantified the life-cycle embodied energy of a villa in the UAE with over 50 years of building life using the average, minimum, and maximum material service life values. Mathematical calculations were performed using MS Excel, and a detailed bill of quantities with >170 building materials and components of the villa were used for investigation.

Findings

For the base case, the initial embodied energy was 57% (7390.5 GJ), whereas the recurrent embodied energy was 43% (5,690 GJ) of the life-cycle embodied energy based on average material service life values. The proportion of the recurrent embodied energy with minimum material service life values was increased to 68% of the life-cycle embodied energy, while it dropped to 15% with maximum material service life values.

Originality/value

The findings provide new data to guide building construction in the UAE and show that recurrent embodied energy contributes significantly to life-cycle energy demand. Further, the study of material service life variations provides deeper insights into future building material specifications and management considerations for building maintenance.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 April 2024

Yi Lu, Gayani Karunasena and Chunlu Liu

From May 2024, Victoria (Australia) will mandatorily raise the minimum house energy rating standards from 6 to 7 stars. However, the latest data shows that only 5.73% of new…

Abstract

Purpose

From May 2024, Victoria (Australia) will mandatorily raise the minimum house energy rating standards from 6 to 7 stars. However, the latest data shows that only 5.73% of new Victorian houses were designed beyond 7-star. While previous literature indicates the issue’s link to the compliance behaviour of building practitioners in the design phase, the underlying behavioural determinants are rarely explored. This study thus preliminarily examines building practitioners’ compliance behaviour with 7-star Australian house energy ratings and beyond.

Design/methodology/approach

Using a widely-applied method to initially examine an under-explored phenomenon, eight expert interviews were conducted with building practitioners, a state-level industry regulator and a leading national building energy policy researcher. The study triangulated the data with government-led research reports.

Findings

The experts indicate that most building practitioners involved in mainstream volume projects do not go for 7 stars, mainly due to perceived compliance costs and reliance on standardized designs. In contrast, those who work on custom projects are more willing to go beyond 7-star mostly due to the moral norms for a low-carbon environment. The experts further agree that four behavioural determinants (attitudes towards compliance, subjective norms, perceived behavioural control and personal norms) co-shape building practitioners’ compliance behaviour. Interventions targeting these behavioural determinants are recommended for achieving 7 stars and beyond.

Originality/value

This study demonstrates the behavioural determinants that influence building practitioners’ compliance decisions, and offers insight regarding how far they will go to meet 7 stars. It can facilitate the transition to 7 stars by informing policymakers of customized interventions to trigger behaviour change.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 March 2024

Obed Ofori Yemoh, Richard Opoku, Gabriel Takyi, Ernest Kwadwo Adomako, Felix Uba and George Obeng

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat…

Abstract

Purpose

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat transmission load and energy consumption towards green building adaptation.

Design/methodology/approach

Samples of coconut fiber (coir) and corn husk fiber bricks were fabricated and tested for their thermophysical properties using the Transient Plane Source (TPS) 2500s instrument. A simulation was conducted using Dynamic Energy Response of Building - Lunds Tekniska Hogskola (DEROB-LTH) to determine indoor temperature variation over 24 h. The time lag and decrement factor, two important parameters in evaluating building envelopes, were also determined.

Findings

The time lag of the bio-based composite building envelope was found to be in the range of 4.2–4.6 h for 100 mm thickness block and 10.64–11.5 h for 200 mm thickness block. The decrement factor was also determined to be in the range of 0.87–0.88. The bio-based composite building envelopes were able to maintain the indoor temperature of the model from 25.4 to 27.4 °C, providing a closely stable indoor thermal comfort despite varying outdoor temperatures. The temperature variation in 24 h, was very stable for about 8 h before a degree increment, providing a comfortable indoor temperature for occupants and the need not to rely on air conditions and other mechanical forms of cooling. Potential energy savings also peaked at 529.14 kWh per year.

Practical implications

The findings of this study present opportunities to building developers and engineers in terms of selecting vernacular materials for building envelopes towards green building adaptation, energy savings, reduced construction costs and job creation.

Originality/value

This study presents for the first time, time lag and decrement factor for bio-based composite building envelopes for green building adaptation in hot climates, as found in Ghana.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 11 January 2024

Elijah Kusi, Isaac Boateng and Humphrey Danso

Using building information modelling (BIM) technology, a conventional structure in this study was converted into a green building to measure its energy usage and CO2 emissions.

207

Abstract

Purpose

Using building information modelling (BIM) technology, a conventional structure in this study was converted into a green building to measure its energy usage and CO2 emissions.

Design/methodology/approach

Digital images of the existing building conditions were captured using unmanned aerial vehicle (UAV), and were fed into Meshroom to generate the building’s geometry for 3D parametric model development. The model for the existing conventional building was created and converted to an energy model and exported to gbXML in Autodesk Revit for a whole building analysis which was carried out in the Green Building Studio (GBS). In the GBS, the conventional building was retrofitted into a green building to explore their energy consumption and CO2 emission.

Findings

By comparing the green building model to the conventional building model, the research found that the green building model saved 25% more energy while emitting 46.8% less CO2.

Practical implications

The study concluded that green building reduces energy consumption, thereby reducing the emission of CO2 into the environment. It is recommended that buildings should be simulated at the design stage to know their energy consumption and carbon emission performance before construction.

Social implications

Occupant satisfaction, operation cost and environmental safety are essential for sustainable or green buildings. Green buildings increase the standard of living and enhance indoor air quality.

Originality/value

This investigation aided in a pool of information on how to use BIM methodology to retrofit existing conventional buildings into green buildings, showing how green buildings save the environment as compared to conventional buildings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 January 2024

Wanlin Chen and Joseph Lai

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research…

Abstract

Purpose

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research domain is lacking. This study aims to uncover the study trend, research hotspots, prominent contributors, research gaps and directions in this field.

Design/methodology/approach

With a hybrid review approach adopted, relevant literature was examined in three stages. In Stage 1, literature retrieved from Scopus was screened for their relevance to the study topic. In Stage 2, bibliographic data of the shortlisted literature underwent scientometric analyses by the VOSviewer software. Finally, an in-depth qualitative review was made on the key literature.

Findings

The research hotspots in performance assessment of residential building renovation were found: energy efficiency, sustainability, thermal comfort and life cycle assessment. After the qualitative review, the following research gaps and future directions were unveiled: (1) assessments of retrofits incorporating renewable energy and energy storage systems; (2) evaluation of policy options and financial incentives to overcome financial constraints; (3) establishment of reliable embodied energy and carbon datasets; (4) indoor environment assessment concerning requirements of COVID-19 prevention and involvement of water quality, acoustic insulation and daylighting indicators; and (5) holistic decision-making model concerning residents' intentions and safety, health, well-being and social indicators.

Originality/value

Pioneered in providing the first comprehensive picture of the assessment studies on residential building renovations, this study contributes to offering directions for future studies and insights conducive to making rational decisions for residential building renovations.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 13 November 2023

Thisara Manupriya Sathkumara, Anuradha Samarajeewa Waidyasekara and Hasith Chathuranga Victar

The use of renewable energy has become necessary because of the harmful effects of current energy sources on the environment, limited availability and financial crisis…

Abstract

Purpose

The use of renewable energy has become necessary because of the harmful effects of current energy sources on the environment, limited availability and financial crisis. Transparent solar panels have emerged as a promising technology for integrating renewable energy generation into building structures. Therefore, this paper aims to explore the feasibility of transparent solar panels for high-rise building façades in Sri Lanka.

Design/methodology/approach

The research apprehended a qualitative approach, including two expert interview rounds adhering to the Delphi technique with 17 and 15 experts each per round. Manual content analysis was incorporated to analyse the collected data.

Findings

Regarding operation and maintenance, the study emphasizes the importance of regular inspection, cleaning and repair of transparent solar panels to ensure optimal performance and longevity. These activities contribute to maximizing energy generation and maintaining the aesthetic appeal of the building. The benefits of implementing transparent solar panels on building façades are manifold. They include renewable energy generation, reduced greenhouse gas emissions, improved energy efficiency and enhanced architectural aesthetics. Furthermore, the research findings underscore the potential of transparent solar panels to contribute to Sri Lanka’s sustainable development goals and address the country’s increasing energy demand. However, the study also identifies challenges that need to be addressed for successful implementation.

Originality/value

This study contributes to understanding the feasibility of transparent solar panels for high-rise building façades in Sri Lanka. The research findings offer valuable insights into the operation and maintenance aspects, benefits, challenges and strategies for implementing transparent solar panels effectively. This knowledge can guide policymakers, architects and developers in making informed decisions regarding the integration of transparent solar panels, thereby promoting sustainable and energy-efficient building practices in Sri Lanka.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 August 2022

Jianjin Yue, Wenrui Li, Jian Cheng, Hongxing Xiong, Yu Xue, Xiang Deng and Tinghui Zheng

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type…

Abstract

Purpose

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type, there is currently no model that considers the time factor to accurately calculate the CFP of hospital building throughout their life cycle. This paper aims to establish a CFP calculation model that covers the life cycle of hospital building and considers time factor.

Design/methodology/approach

On the basis of field and literature research, the basic framework is built using dynamic life cycle assessment (DLCA), and the gray prediction model is used to predict the future value. Finally, a CFP model covering the whole life cycle has been constructed and applied to a hospital building in China.

Findings

The results applied to the case show that the CO2 emission in the operation stage of the hospital building is much higher than that in other stages, and the total CO2 emission in the dynamic and static analysis operation stage accounts for 83.66% and 79.03%, respectively; the difference of annual average emission of CO2 reached 28.33%. The research results show that DLCA is more accurate than traditional static life cycle assessment (LCA) when measuring long-term objects such as carbon emissions in the whole life cycle of hospital building.

Originality/value

This research established a carbon emission calculation model that covers the life cycle of hospital building and considered time factor, which enriches the research on carbon emission of hospital building, a special and extensive public building, and dynamically quantifies the resource consumption of hospital building in the life cycle. This paper provided a certain reference for the green design, energy saving, emission reduction and efficient use of hospital building, obviously, the limitation is that this model is only applicable to hospital building.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 23 September 2022

Visar Hoxha and Veli Lecaj

The purpose of this paper is to highlight the regulatory barriers to achieving sustainable buildings in Kosovo. The present paper focuses on regulatory barriers viewed from the…

Abstract

Purpose

The purpose of this paper is to highlight the regulatory barriers to achieving sustainable buildings in Kosovo. The present paper focuses on regulatory barriers viewed from the perspective of construction industry experts in achieving sustainable buildings.

Design/methodology/approach

The present study uses a qualitative research method and semi-structured interviews as a research instrument. The present study interviews around 20 experts in construction and property management, property development, spatial planning and energy management.

Findings

The study finds that Kosovo building laws and regulations provide for the materials assessment criteria, but the materials assessment criteria are only for mechanic strength. The study further finds that the sustainability concept is not included and incorporated in Kosovo's urban planning laws and regulations. The study also finds that despite specific clauses mentioning energy performance certificates in the Law on Energy Performance of Buildings in Kosovo, energy performance certificates appears to be not enforced and the nature of the barrier is more organizational rather than regulatory. Finally, the study finds that Kosovo laws are silent as far as green labeling of building materials is concerned.

Practical implications

The implication of the present finding is that policymakers in Kosovo not only should include clear sustainable materials assessment criteria in the law, but also enforce those criteria through testing and inspection mechanisms included in the law and implemented in practice through funding and organizational support. Nonetheless, policymakers in Kosovo should contemplate amending the urban planning laws in Kosovo and include both the term of sustainability at the planning level and conformity guidelines for sustainable design that can be done at the administrative directive level. Further, the clauses in the law do not suffice if the clauses are not accompanied by specific systemic and organizational support in the issuance of energy performance certificates. Policymakers in Kosovo should be proactive in designing clauses that specify green labeling standards for materials; however, these labeling standards should not adversely affect the cost of construction and reduce the demand for real estate.

Originality/value

The study is the first qualitative study about the perception of construction professionals in Kosovo, regarding the regulatory barriers of sustainable buildings in Kosovo.

Details

Property Management, vol. 42 no. 2
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 1 April 2024

Armin Saadatian and Svetlana Olbina

The retail sector has the largest energy consumption among commercial buildings in the U.S. Although previous studies explored benefits, barriers and solutions for implementing…

Abstract

Purpose

The retail sector has the largest energy consumption among commercial buildings in the U.S. Although previous studies explored benefits, barriers and solutions for implementing sustainability in various building sectors, research focused on retail facilities has been very scarce. This study aims to explore U.S. facilities managers’ perceptions of barriers that prevented the implementation of energy-efficiency practices in the retail sector. Their perceptions were compared by facility size and facilities management company’s business revenue.

Design/methodology/approach

An online survey was distributed to the members of the International Facility Management Association and the author's LinkedIn network. The survey responses were analyzed using descriptive statistical analysis and ANOVA.

Findings

Managers from large facilities, as opposed to those from small ones, significantly more agreed that the unavailability of building automation systems, a lack of professional writing skills and a lack of awareness of life cycle cost (LCC) were the barriers. Business revenue did not cause significantly different perceptions of the barriers except for a lack of awareness of LCC and a lack of support from upper management.

Originality/value

This study fills the research gap on energy efficiency in the retail sector by revealing U.S. facilities managers’ perceptions of the barriers to the implementation of energy-efficiency practices in retail stores. This novel study compares perceptions of the facilities managers by facility size and business revenue; this comparison has not been performed before. The study also identified several new barriers to the implementation of energy efficiency in the retail sector.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of over 6000