Search results

1 – 10 of over 52000
Article
Publication date: 18 April 2017

Yi Bao, Song Cen and Chenfeng Li

A simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin–Reissner plates. Three distortion-resistant and…

Abstract

Purpose

A simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin–Reissner plates. Three distortion-resistant and locking-free eight-node plate elements are proposed by utilizing this method.

Design/methodology/approach

This method is based on the principle of minimum complementary energy, in which the trial functions for resultant fields are derived from two displacement functions, F and f, and satisfy all governing equations. Meanwhile, the element boundary displacements are determined by the locking-free arbitrary order Timoshenko’s beam functions. Then, three locking-free eight-node, 24-DOF quadrilateral plate-bending elements are formulated: HDF-P8-23β for general cases, HDF-P8-SS1 for edge effects along soft simply supported (SS1) boundary and HDF-P8-FREE for edge effects along free boundary.

Findings

The proposed elements can pass all patch tests, exhibit excellent convergence and possess superior precision when compared to all other existing eight-node models, and can still provide good and stable results even when extremely coarse and distorted meshes are used. They can also effectively solve the edge effect by accurately capturing the peak value and the dramatical variations of resultants near the SS1 and free boundaries. The proposed eight-node models possess potential in engineering applications and can be easily integrated into commercial software.

Originality/value

This work presents a new scheme, which can take the advantages of both analytical and discrete methods, to develop high-order mesh distortion-resistant Mindlin–Reissner plate-bending elements.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 June 2013

Yihua Cao and Xu Zhu

The purpose of this paper is to describe the effects of characteristic geometric parameters on parafoil aerodynamic performance by using computational fluid dynamics (CFD…

Abstract

Purpose

The purpose of this paper is to describe the effects of characteristic geometric parameters on parafoil aerodynamic performance by using computational fluid dynamics (CFD) technique.

Design/methodology/approach

The main characteristic geometric parameters cover the planform geometry, arc‐anhedral angle, basic airfoil and leading‐edge cut. By using the CFD technique, a large number of numerical parafoil models with different geometric parameters are developed to study the correlations between these parameters and parafoil aerodynamic performance.

Findings

The CFD technique is feasible and effective to study the effects of characteristic geometric parameters on parafoil aerodynamic performance in three‐dimensional (3‐D) flowfield condition. The planform geometry can affect the aerodynamic performance obviously. An increase in arc‐anhedral angle decreases the lift of a parafoil but has little effect on lift‐drag ratio. The model with smaller leading‐edge radius and thinner thickness of parafoil section achieves larger lift‐drag ratio. The leading‐edge cut has little effect on lift but increase drag dramatically; meanwhile, its effect on flowfield is confined to the nearby region of leading edge.

Practical implications

The presented 3‐D numerical simulation results of parafoil models are shown to have good agreement with the tunnel test data in general trend; meanwhile, considering its relatively low‐cost, the CFD method could be further used to predict coefficients in pre‐research or at non‐experimental conditions.

Originality/value

The paper can form the foundation of further studies on parafoil aerodynamic performance with different geometric parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 December 1999

Sau Fun Frency Ng and Chi Leung Patrick Hui

Pressure garments are mainly made of elastic Lycra fabrics and tailor‐made to individual patients’ measurements to provide an appropriate amount of skin‐garment interface pressure…

Abstract

Pressure garments are mainly made of elastic Lycra fabrics and tailor‐made to individual patients’ measurements to provide an appropriate amount of skin‐garment interface pressure for burn rehabilitation. However, the fabric tension would be different at various locations from the hem edges of pressure garments, and thus the skin‐garment interface pressure cannot be uniformly maintained over the interface surface. Aims to investigate the pattern of interface pressure changes caused by the different types of edge finish used for making pressure garments. The effect of garment sizes on the change of interface pressure was also examined. Experiments were carried out using two selected elastic Lycra fabrics, four types of hem finish and three different garment sizes. The results of the study provide a guideline for designing the edge finish of pressure garments, and a minimum margin from the hem edges of garments to the scar area is also recommended.

Details

International Journal of Clothing Science and Technology, vol. 11 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 June 2017

Antonio Armillotta, Stefano Bianchi, Marco Cavallaro and Stefania Minnella

This paper aims to provide an experimental evaluation of geometric errors on the edges of parts manufactured by the fused deposition modeling (FDM) process.

Abstract

Purpose

This paper aims to provide an experimental evaluation of geometric errors on the edges of parts manufactured by the fused deposition modeling (FDM) process.

Design/methodology/approach

An experimental plan was conducted by building parts in ABS thermoplastic resin on a commercially available machine with given combinations of the three geometric variables (inclination, included and incidence angle) defined in the first part of the paper. Edges on built parts were inspected on a two-dimensional non-contact profilometer to measure position and form errors.

Findings

The analysis of measurement results revealed that the edge-related variables have significant influences on the geometric errors. The interpretation of error variations with respect to the different angles confirmed the actual occurrence of the previously discussed error causes. As an additional result, quantitative predictions of the errors were provided as a function of angle values.

Research limitations/implications

The experimental results refer to fixed process settings (material, FDM machine, layer thickness, build parameters, scan strategies).

Originality/value

The two-part paper is apparently the first to have studied the edges of additively manufactured parts with respect to geometric accuracy, a widely studied topic for surface features.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 1955

T. Nonweiler

We shall attempt here to summarize the existing data on the values of the low‐speed CLmax. of wings, in the absence of a fuselage, and without including information on stalling…

Abstract

We shall attempt here to summarize the existing data on the values of the low‐speed CLmax. of wings, in the absence of a fuselage, and without including information on stalling incidence or pitching moment. The summary is limited to the consideration of unswept wings, and those of delta plan form, which have symmetrical sections: there is some discussion of the maximum lift increments due to the use of flaps of various kinds.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 2006

Ratnakar S. Udar and P. K. Datta

To predict the occurrence of the combination resonances in parametrically excited, simply supported laminated composite plates in contrast to the simple resonances by using…

Abstract

Purpose

To predict the occurrence of the combination resonances in parametrically excited, simply supported laminated composite plates in contrast to the simple resonances by using first‐order shear deformation lamination theory considering the effects of shear deformation and rotary inertia.

Design/methodology/approach

Finite element technique is applied to obtain the equilibrium equation of a plate. Modal transformation is applied to transform the equilibrium equation into a suitable form for the application of the method of multiple scales (MMS). The MMS is applied to obtain the boundaries of the simple and combination resonances.

Findings

The combination resonance zones contribute a considerable amount to the local instability region and the widths of combination resonance zones are comparable to those of the simple resonance zones for the loading of the small bandwidth at one end or for the concentrated edge loading.

Practical implications

Aircrafts, spacecrafts and many other structures such as ships, bridges, vehicles and offshore structures use the plate type elements, which are susceptible to dynamic instability.

Originality/value

It will assist the researchers of stability behavior of elastic systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 August 2016

Man Zhang and Abdelkader Frendi

The tubercles at the leading edge of Humpback Whale flippers have been shown to increase aerodynamic efficiency. The purpose of this paper is to compute the flow structures and…

Abstract

Purpose

The tubercles at the leading edge of Humpback Whale flippers have been shown to increase aerodynamic efficiency. The purpose of this paper is to compute the flow structures and noise signature of a NACA0012 airfoil with and without leading edge waviness, and located in the wake of a cylinder using the hybrid RANS-LES method.

Design/methodology/approach

The mean flow Mach number is 0.2 and the angle of attack used is 2°. After benchmarking the method using existing experimental results, unsteady computations were then carried-out on both airfoil geometries and for a 2° angle of attack.

Findings

Results from these computations confirmed the aerodynamic benefits of the leading edge waviness. Moreover, the wavy leading edge airfoil was found to be at least 4 dB quieter than its non-wavy counterpart. In-depth analysis of the computational results revealed that the wavy leading edge airfoil breaks up the large coherent structures which are then convected at higher speeds down the trough region of the waviness in agreement with previous experimental observations. This result is supported by both the two-point and space-time correlations of the wall pressure.

Research limitations/implications

The limitations of the current findings reside in the fact that both the Reynolds number and the flow Mach number are low, therefore not applicable to aircrafts. In order to extend the study to practical aircrafts one needs huge grids and large computational resources.

Practical implications

The results obtained here could have a huge implications on the design of future aircrafts and spacecrafts. More specifically, the biggest benefit from such redesign is the reduction of acoustic signature as well as increased efficiency in fuel consumption.

Social implications

Reducing acoustic signature from aircrafts has been a major research thrust for NASA and Federal Aviation Administration. The social impact of such reduction would be improved quality of life in airport communities. For military aircrafts, this could results in reduced detectability and hence saving lives.

Originality/value

Humpback Whales have been studied by various researchers to understand the effects of leading edge “tubercles” on flow structures. What is new in this study is the numerical confirmation of the effects of the tubercles on the flow structures and the resulting noise radiations. It is shown through the use of two-point correlations and space-time correlations that the flow structures in the trough area are indeed vortex tubes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 March 2017

Wenjing Zhang, Wei Chen and Zhe Liu

The aim of this study is to understand thermal effects and surface topography of roller bearings with misaligned load under combination of multifactors by an experimental method.

Abstract

Purpose

The aim of this study is to understand thermal effects and surface topography of roller bearings with misaligned load under combination of multifactors by an experimental method.

Design/methodology/approach

A series of orthogonal experiments would need to be planned and performed. A ranking of impact degree of factors on edge effect and eccentric load effect can be learned with multivariate analysis of variance by Statistical Product and Service Solutions software. Influence rules of each individual factor can also be obtained through more experiments. A roller surface phase diagram both before and after test can be observed with metallographic microscope. An axial profile data of roller can be measured by PGI 3D Profiler, then a roller generatrix contour can be achieved through filtering measured signal with empirical mode decomposition method.

Findings

Slip fraction has most impact on edge effect, whereas tilting angle plays a key role in eccentric load effect. For the case of low temperature, skidding damage does not occur. Inversely, because of the high pressure in partial elastohydrodynamic lubrication caused by roller tilt, running-in occurs and micro asperity flattening is observed on a rough surface. And, the larger the tilting angle, the more obvious the micro-flattening and the greater the reduction of roller surface roughness after the test.

Originality/value

A lot of theoretical studies on thermal effect of roller bearings surface morphology have been published. However, there are little on relevant experimental study, especially on thermal effect with an integration of sliding, tilting and unbalance loading.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2022

E. Livya and S. Nadaraja Pillai

This paper aims to study the extended trailing edge airfoil for a range of angle of attack at different intensities of turbulence.

Abstract

Purpose

This paper aims to study the extended trailing edge airfoil for a range of angle of attack at different intensities of turbulence.

Design/methodology/approach

In this paper, an experimental study on NACA 0020 airfoil with thin extended trailing edge modification of amplitude of h = 0.1c, 0.2c and 0.3c at the Reynolds number of 2.14 × 105 are tested. The research was carried out for an angle of attack ranging from 0° = α = 35° for the turbulence intensity of 0.3%, 3%, 5%, 7% and 12%. From the experimental readings, the surface pressures are scanned using a Scanivalve (MPS2464) pressure scanner for a sampling frequency of 700 Hz. The scanned pressures are converted to aerodynamic force coefficient and the results are combined and discussed.

Findings

The airfoil with the extended trailing edge will convert the adverse pressure gradient to a plateau pressure zone, indicating the delayed flow separation. The CL value at higher turbulence intensity (TI = 12%) for the extended trailing edge over perform the base airfoil at the post-stall region. The maintenance of flow stability is observed from the spectral graph.

Practical implications

A thin elongated trailing edge attached to the conventional airfoil serves as a flow control device by delaying the stall and improving the lift characteristics. Additionally, extending the airfoil's trailing edge helps to manage the performance of the airfoil even at a high level of turbulence.

Originality/value

Distinct from existing studies, the presented results reveals how the extended trailing edge attached to the airfoil performs in the turbulence zone ranging from 0.3% to 12% of TI. The displayed pressure distribution explains the need for increasing trailing edge amplitude (h) and its impact on flow behaviour. The observation is that extended trailing edge airfoil bears to maintain the performance even at higher turbulence region.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 October 2017

Antonio Armillotta and Marco Cavallaro

The purpose of this paper is to discuss the problem of the geometric accuracy of edges in parts manufactured by the Fused Deposition Modeling process, as a preliminary step for an…

Abstract

Purpose

The purpose of this paper is to discuss the problem of the geometric accuracy of edges in parts manufactured by the Fused Deposition Modeling process, as a preliminary step for an experimental investigation.

Methodology/approach

Three geometric variables (inclination, included and incidence angles) were defined for an edge. The influence of each variable on the geometric errors was explained with reference to specific causes related to physical phenomena and process constraints.

Findings

Occurrence conditions for all causes were determined and visualized in a process map, which was also developed into a software procedure for the diagnosis of quality issues on digital models of the parts.

Research limitations/implications

The process map was developed by only empirical considerations and does not allow to predict the amount of geometric errors. In the second part of the paper, experimental tests will help to extend and validate the prediction criteria.

Practical implications

As demonstrated by an example, the results allow to predict the occurrence of visible defects on the edges of a part before manufacturing it with a given build orientation.

Originality/value

In literature, the geometric accuracy of additively manufactured parts is only related to surface features. The paper shows that the quality of edges depends on additional variables and causes to be carefully controlled by process choices.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 52000