Search results

1 – 10 of 267
Article
Publication date: 1 August 2016

Man Zhang and Abdelkader Frendi

The tubercles at the leading edge of Humpback Whale flippers have been shown to increase aerodynamic efficiency. The purpose of this paper is to compute the flow structures and…

Abstract

Purpose

The tubercles at the leading edge of Humpback Whale flippers have been shown to increase aerodynamic efficiency. The purpose of this paper is to compute the flow structures and noise signature of a NACA0012 airfoil with and without leading edge waviness, and located in the wake of a cylinder using the hybrid RANS-LES method.

Design/methodology/approach

The mean flow Mach number is 0.2 and the angle of attack used is 2°. After benchmarking the method using existing experimental results, unsteady computations were then carried-out on both airfoil geometries and for a 2° angle of attack.

Findings

Results from these computations confirmed the aerodynamic benefits of the leading edge waviness. Moreover, the wavy leading edge airfoil was found to be at least 4 dB quieter than its non-wavy counterpart. In-depth analysis of the computational results revealed that the wavy leading edge airfoil breaks up the large coherent structures which are then convected at higher speeds down the trough region of the waviness in agreement with previous experimental observations. This result is supported by both the two-point and space-time correlations of the wall pressure.

Research limitations/implications

The limitations of the current findings reside in the fact that both the Reynolds number and the flow Mach number are low, therefore not applicable to aircrafts. In order to extend the study to practical aircrafts one needs huge grids and large computational resources.

Practical implications

The results obtained here could have a huge implications on the design of future aircrafts and spacecrafts. More specifically, the biggest benefit from such redesign is the reduction of acoustic signature as well as increased efficiency in fuel consumption.

Social implications

Reducing acoustic signature from aircrafts has been a major research thrust for NASA and Federal Aviation Administration. The social impact of such reduction would be improved quality of life in airport communities. For military aircrafts, this could results in reduced detectability and hence saving lives.

Originality/value

Humpback Whales have been studied by various researchers to understand the effects of leading edge “tubercles” on flow structures. What is new in this study is the numerical confirmation of the effects of the tubercles on the flow structures and the resulting noise radiations. It is shown through the use of two-point correlations and space-time correlations that the flow structures in the trough area are indeed vortex tubes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 August 2021

Zbigniew Rarata

The purpose of this paper is to investigate airfoil’s tonal noise reduction mechanism when deploying surface irregularities, such as surface waviness by means of spatial stability…

148

Abstract

Purpose

The purpose of this paper is to investigate airfoil’s tonal noise reduction mechanism when deploying surface irregularities, such as surface waviness by means of spatial stability analyses.

Design/methodology/approach

Flow field calculations over smooth and wavy-surface NACA 0012 airfoils at 2° angle of attack and at Reynolds number of 200,000 are performed using the large eddy simulation (LES) approach. Three geometrical configurations are considered: a smooth NACA 0012 airfoil, wavy surface on the suction side (SS) and wavy surface on the pressure side (PS). The spatial stability analyses using the LES-generated flow fields are conducted and validated against the Orr-Sommerfeld stability analysis for the smooth airfoil configuration.

Findings

The spatial stability analyses show that inclusion of the wavy-type modification on the SS of the airfoil does not lead to altering of the acoustic feedback loop mechanism, with respect to the mechanism observed for the smooth airfoil configuration. In contrast, applying the surface modifications to the airfoil PS leads to a significant reduction of the amplification range of disturbances in the vicinity of the trailing edge for the frequency of the acoustic feedback loop mechanism.

Practical implications

The spatial analyses using, for example, LES-generated flow fields can be widely used to determine acoustic sources and associated distributions of amplifications for a wide range of applications in the aeroacoustics.

Originality/value

The spatial stability analysis approach based on flow fields computed a priori using the LES method has been introduced, validated and used to determine behaviour of the acoustic feedback loop when accurate reconstruction of geometry effects is required.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 June 2013

Zhang Xingwei, Zhou Chaoying, Zhang Tao and Ji Wenying

The purpose of this paper is to investigate the effect of spanwise shape of the leading edge on unsteady aerodynamic characteristics of wings during forward flapping and gliding…

Abstract

Purpose

The purpose of this paper is to investigate the effect of spanwise shape of the leading edge on unsteady aerodynamic characteristics of wings during forward flapping and gliding flight.

Design/methodology/approach

A computational fluid dynamics approach was conducted to analyze the flow around airfoils with sinusoidal‐like protuberances at a Reynolds number of 104. Three‐dimensional time‐dependent incompressible Navier‐Stokes equations are numerically solved by using finite volume method. A multigrid mesh method, which was applied to the situation of fluid across the heaving models is used to simulate this type of flow. The simulations are performed for the wavelength between neighbouring peaks of 0.25c and 0.5c. For each wavelength, two heights of the tubercles which are 5 per cent and 10 per cent of the chordwise length of wing, are employed on the leading edge of wings. The aerodynamic forces and flow structure around airfoils are presented and compared in detail. Special attention is paid to investigate the effect of leadingedge shape on the fluid dynamic forces.

Findings

Present results reveal that the wings with leadingedge tubercles have an aerodynamic advantage during gliding flight and also have the potential advantages during flapping forward flight.

Originality/value

On the basis of computational study, an improved scenario for flapping wing microaviation vehicle has been originally proposed.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 25 January 2021

Mohamed Arif Raj Mohamed, Rajesh Yadav and Ugur Guven

This paper aims to achieve an optimum flow separation control over the airfoil using a passive flow control method by introducing a bio-inspired nose near the leading edge of the…

Abstract

Purpose

This paper aims to achieve an optimum flow separation control over the airfoil using a passive flow control method by introducing a bio-inspired nose near the leading edge of the National Advisory Committee for Aeronautics (NACA) 4 and 6 series airfoil. In addition, to find the optimised leading edge nose design for NACA 4 and 6 series airfoils for flow separation control.

Design/methodology/approach

Different bio-inspired noses that are inspired by the cetacean species have been analysed for different NACA 4 and 6 series airfoils. Bio-inspired nose with different nose length, nose depth and nose circle diameter have been analysed on airfoils with different thicknesses, camber and camber locations to understand the aerodynamic flow properties such as vortex formation, flow separation, aerodynamic efficiency and moment.

Findings

The porpoise nose design that has a leading edge with depth = 2.25% of chord, length = 0.75% of chord and nose diameter = 2% of chord, delays the flow separation and improves the aerodynamic efficiency. Average increments of 5.5% to 6° in the lift values and decrements in parasitic drag (without affecting the pitching moment) for all the NACA 4 and 6 series airfoils were observed irrespective of airfoil geometry such as different thicknesses, camber and camber location.

Research limitations/implications

The two-dimensional computational analysis is done for different NACA 4 and 6 series airfoils at low subsonic speed.

Practical implications

This design improves aerodynamic performance and increases the structural strength of the aircraft wing compared to other conventional high lift devices and flow control devices. This universal leading edge flow control device can be adapted to aircraft wings incorporated with any NACA 4 and 6 series airfoil.

Social implications

The results would be of significant interest in the fields of aircraft design and wind turbine design, lowering the cost of energy and air travel for social benefits.

Originality/value

Different bio-inspired nose designs that are inspired by the cetacean species have been analysed for NACA 4 and 6 series airfoils and universal optimum nose design (porpoise airfoil) is found for NACA 4 and 6 series airfoils.

Article
Publication date: 22 May 2007

J.L. Lin, C.Y. Wei and C.Y. Lin

This study seeks to explore the aerodynamic performance of wings with different shapes at low Reynolds numbers.

1226

Abstract

Purpose

This study seeks to explore the aerodynamic performance of wings with different shapes at low Reynolds numbers.

Design/methodology/approach

The airfoils of these wings are made from aluminum plates, and the maximum cord length and wingspan are 15 cm. Wings A to D are plates with 6 percent Gottingen camber but different wing planforms. The forward‐half sections of wings E and F are dragonfly‐like, whereas the rear‐half sections of wings E and F are flat and positively cambered, respectively. The aspect ratios of these wings are close to one, and the ratios of plate thickness to the maximum cord length are 1.3 percent. Experimental results indicate that the wings with Gottingen camber have a superior lift and lift‐to‐drag ratio, whereas the wings with dragonfly‐like airfoils perform well in terms of drag and pitch moment.

Findings

The aerodynamic measurements of the wings demonstrate that the wing with the Gottingen camber airfoil, a swept‐back leading edge and a straight trailing edge is suitable for use in micro aerial vehicle (MAV). An MAV is fabricated with this wing and the aerodynamic performance of the MAV is examined and compared with the bare wing data.

Originality/value

This study develops several criteria to the design of MAV‐sized wings. For example, the thickness ratio of airfoil must be small, usually less than 2 percent. Besides, the airfoil must be cambered adequately. Furthermore, a wing planform with a swept‐back leading edge and a straight trailing edge would be contributive to the successful flights of MAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 31 August 2022

Mahdi Naderinezhad and M.H. Djavareshkian

This study aims to investigate the effectiveness of two types of winglets, multi-tip and raked, on the performance of sinusoidal and simple leading-edge wings and compares it by a…

Abstract

Purpose

This study aims to investigate the effectiveness of two types of winglets, multi-tip and raked, on the performance of sinusoidal and simple leading-edge wings and compares it by a numerical method.

Design/methodology/approach

The wing configuration in this study is rectangular and uses NACA0020 section, and all simulations are performed by a numerical method based on finite volume and base pressure algorithm in Reynolds 2 × [10]^5. In the mentioned numerical method, the flow is considered turbulent, and the k-ω-SST model is used. To calculate the stresses on the wing surface, the mesh is extended to below the viscous layer, and a second-order upstream accuracy is used to calculate the convection flux.

Findings

The use of raked and multi-tip winglets for the sinusoidal edge of the wing improved aerodynamic performance by 5.12 and 2.28%, respectively, and the greatest effect of these two winglets was on increasing the lifting force and reducing the inductive drag, respectively. Also, by examining the distribution of induced vortices around the configurations, it was found that the curvature of the sinusoidal wing tip at the angles of attack before stall reduced the strength of the induced vortices and, the use of winglet during and after stall, caused increased aerodynamic performance of the sinusoidal wing.

Practical implications

The whale is an international species of aquatic animal found in most of the world’s oceans. It has large fin aspect ratios that have a series of bulges at the edge of the attack, which improves the aerodynamic performance near and after stall. Today, one of the fields of research is the use of this idea in the wings of micro air vehicle.

Originality/value

Winglet reduces induced drag in simple wings. So far, the effect of winglets on wings with sinusoidal attack edges has not been investigated.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 April 2022

Jeena Joseph, Sathyabhama A. and Surya Sridhar

With aims to increase the aerodynamic efficiency of aerodynamic surfaces, study on flow control over these surfaces has gained importance. With the addition of flow control…

Abstract

Purpose

With aims to increase the aerodynamic efficiency of aerodynamic surfaces, study on flow control over these surfaces has gained importance. With the addition of flow control devices such as synthetic jets and vortex generators, the flow characteristics can be modified over the surface and, at the same time, enhance the performance of the body. One such flow control device is the tubercle. Inspired by the humpback whale’s flippers, these leading-edge serrations have improved the aerodynamic efficiency and the lift characteristics of airfoils and wings. This paper aims to discusses in detail the flow physics associated with tubercles and their effect on swept wings.

Design/methodology/approach

This study involves a series of experimental and numerical analyses that have been performed on four different wing configurations, with four different sweep angles corresponding to 0°, 10°, 20° and 30° at a low Reynolds number corresponding to Rec=100,000.

Findings

Results indicate that the effect of tubercles diminishes with an increase in wing sweep. A significant performance enhancement was observed in the stall and post-stall regions. The addition of tubercles led to a smooth post-stall lift characteristic compared to the sudden loss in the lift with regular wings. Among the four different wings under observation, it was found that tubercles were most effective on the 0° configuration (no sweep), showing a 10.8% increment in maximum lift and a 38.5% increase in the average lift generated in the post-stall region. Tubercles were least effective on 30° configuration. Furthermore, with an increase in wing sweep, co-rotating vortices were distinctly observed rather than counter-rotating vortices.

Originality/value

While extensive numerical and experimental studies have been performed on straight wings with tubercles, studies on the tubercle effect on swept wings at low Reynolds number are minimal and mainly experimental in nature. This study uses numerical methods to explore the complex flow physics associated with tubercles and their implementation on swept wings. This study can be used as an introductory study to implement passive flow control devices in the low Reynolds number regime.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 December 2022

Mohamed Arif Raj Mohamed, Ketu Satish Kumar Reddy and Somaraju Sai Sri Vishnu

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic…

Abstract

Purpose

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic performance by increasing the drag. Hence, they have made as a movable device to deploy only at high angles of attack, which increases the design and installation complexities. This study aims to focus on the comparison of aerodynamic efficiency of different conventional leading edge (LE) slat configurations with simple fixed bioinspired slat design.

Design/methodology/approach

This research analyzes the effect of LE slat on aerodynamic performance of CLARK Y airfoil at low and high angles of attack. Different geometrical parameters such as slat chord, cutoff, gap, width and depth of LE slat have been considered for the analysis.

Findings

It has been found that the LE slat configuration with slat chord 30% of airfoil chord, forward extension 8% of chord, dip 3% of chord and gap 0.75% of chord gives higher aerodynamic efficiency (Cl/Cd) than other LE slat configurations, but it affects the low angles of attack aerodynamic performance with the deployed condition. Hence, this optimum slat configuration is further modified by closing the gap between LE slat and the main airfoil, which is inspired by the marine mammal’s nose. Thus increases the coefficient of lift at high angles of attack due to better acceleration over the airfoil nose and as well enhances the aerodynamic efficiency at low angles of attack.

Research limitations/implications

The two-dimensional computational analysis has been done for different LE slat’s geometrical parameters at low subsonic speed.

Practical implications

This bio-inspired nose design improves aerodynamic performance and increases the structural strength of aircraft wing compared to the conventional LE slat. This fixed design avoids the complex design and installation difficulties of conventional movable slats.

Social implications

The findings will have significant impact on the fields of aircraft wing and wind turbine designs, which reduces the design and manufacturing complexities.

Originality/value

Different conventional slat configurations have been analyzed and compared with a simple fixed bioinspired slat nose design at low subsonic speed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 December 2019

Aslesha Bodavula, Rajesh Yadav and Ugur Guven

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Abstract

Purpose

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Design/methodology/approach

Effect of protrusions is investigated through numerical simulation of two-dimensional Navier–Stokes equations using a finite volume solver. Turbulent stresses are resolved through the transition Shear stress transport (four-equation) turbulence model.

Findings

The small protrusion located at 0.05c and 0.1c significantly improve the lift coefficient by up to 36% in the post-stall regime. It also alleviates the leading edge stall. The larger protrusions increase the drag significantly along with significant degradation of lift characteristics in the pre-stall regime as well. The smaller protrusions also increase the frequency of the vortex shedding.

Originality/value

The effect of macroscopic protrusions or deposits in rarely investigated. The delay in stall shown by smaller protrusions can be beneficial to micro aerial vehicles. The smaller protrusions increase the frequency of the vortex shedding, and hence, can be used as a tool to enhance energy production for energy harvesters based on vortex-induced vibrations and oscillating wing philosophy.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 267