Search results

1 – 6 of 6
Content available
Article
Publication date: 23 June 2021

Joe Garcia, Russell Shannon, Aaron Jacobson, William Mosca, Michael Burger and Roberto Maldonado

This paper aims to describe an effort to provide for a robust and secure software development paradigm intended to support DevSecOps in a naval aviation enterprise (NAE) software…

1341

Abstract

Purpose

This paper aims to describe an effort to provide for a robust and secure software development paradigm intended to support DevSecOps in a naval aviation enterprise (NAE) software support activity (SSA), with said paradigm supporting strong traceability and provability concerning the SSA’s output product, known as an operational flight program (OFP). Through a secure development environment (SDE), each critical software development function performed on said OFP during its development has a corresponding record represented on a blockchain.

Design/methodology/approach

An SDE is implemented as a virtual machine or container incorporating software development tools that are modified to support blockchain transactions. Each critical software development function, e.g. editing, compiling, linking, generates a blockchain transaction message with associated information embedded in the output of a said function that, together, can be used to prove integrity and support traceability. An attestation process is used to provide proof that the toolchain containing SDE is not subject to unauthorized modification at the time said critical function is performed.

Findings

Blockchain methods are shown to be a viable approach for supporting exhaustive traceability and strong provability of development system integrity for mission-critical software produced by an NAE SSA for NAE embedded systems software.

Practical implications

A blockchain-based authentication approach that could be implemented at the OFP point-of-load would provide for fine-grain authentication of all OFP software components, with each component or module having its own proof-of-integrity (including the integrity of the used development tools) over its entire development history.

Originality/value

Many SSAs have established control procedures for development such as check-out/check-in. This does not prove the SSA output software is secure. For one thing, a build system does not necessarily enforce procedures in a way that is determinable from the output. Furthermore, the SSA toolchain itself could be attacked. The approach described in this paper enforces security policy and embeds information into the output of every development function that can be cross-referenced to blockchain transaction records for provability and traceability that only trusted tools, free from unauthorized modifications, are used in software development. A key original concept of this approach is that it treats assigned developer time as a transferable digital currency.

Open Access
Article
Publication date: 18 April 2023

Patience Mpofu, Solomon Hopewell Kembo, Marlvern Chimbwanda, Saulo Jacques, Nevil Chitiyo and Kudakwashe Zvarevashe

In response to food supply constraints resulting from coronavirus disease 2019 (COVID-19) restrictions, in the year 2020, the project developed automated household Aquaponics…

Abstract

Purpose

In response to food supply constraints resulting from coronavirus disease 2019 (COVID-19) restrictions, in the year 2020, the project developed automated household Aquaponics units to guarantee food self-sufficiency. However, the automated aquaponics solution did not fully comply with data privacy and portability best practices to protect the data of household owners. The purpose of this study is to develop a data privacy and portability layer on top of the previously developed automated Aquaponics units.

Design/methodology/approach

Design Science Research (DSR) is the research method implemented in this study.

Findings

General Data Protection and Privacy Regulations (GDPR)-inspired principles empowering data subjects including data minimisation, purpose limitation, storage limitation as well as integrity and confidentiality can be implemented in a federated learning (FL) architecture using Pinecone Matrix home servers and edge devices.

Research limitations/implications

The literature reviewed for this study demonstrates that the GDPR right to data portability can have a positive impact on data protection by giving individuals more control over their own data. This is achieved by allowing data subjects to obtain their personal information from a data controller in a format that makes it simple to reuse it in another context and to transmit this information freely to any other data controller of their choice. Data portability is not strictly governed or enforced by data protection laws in the developing world, such as Zimbabwe's Data Protection Act of 2021.

Practical implications

Privacy requirements can be implemented in end-point technology such as smartphones, microcontrollers and single board computer clusters enabling data subjects to be incentivised whilst unlocking the value of their own data in the process fostering competition among data controllers and processors.

Originality/value

The use of end-to-end encryption with Matrix Pinecone on edge endpoints and fog servers, as well as the practical implementation of data portability, are currently not adequately covered in the literature. The study acts as a springboard for a future conversation on the topic.

Details

International Journal of Industrial Engineering and Operations Management, vol. 5 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 18 April 2023

Solomon Hopewell Kembo, Patience Mpofu, Saulo Jacques, Nevil Chitiyo and Brighton Mukorera

Coronavirus Disease 2019 (COVID-19) necessitated the need for “Hospital-at-home” improvisations that involve wearable technology to classify patients within households before…

Abstract

Purpose

Coronavirus Disease 2019 (COVID-19) necessitated the need for “Hospital-at-home” improvisations that involve wearable technology to classify patients within households before visiting health institutions. Do-It-Yourself wearable devices allow for the collection of health data leading to the detection and/or prediction of the prevalence of the disease. The sensitive nature of health data requires safeguards to ensure patients’ privacy is not violated. The previous work utilized Hyperledger Fabric to verify transmitted data within Smart Homes, allowing for the possible implementation of legal restrictions through smart contracts in the future. This study aims to explore privacy-enhancing authentication schemes that are operated by multiple credential issuers and capable of integration into the Hyperledger ecosystem.

Design/methodology/approach

Design Science Research is the methodology that was used in this study. An architecture for ABC-privacy was developed and evaluated.

Findings

While the privacy-by-design architecture enhances data privacy through edge and fog computing architecture, there is a need to provide an additional privacy layer that limits the amount of data that patients disclose. Selective disclosure of credentials limits the number of information patients or devices divulge.

Originality/value

The evaluation of this study identified Coconut as the most suitable attribute-based credentials scheme for the Smart Homes Patients and Health Wearables use case Coconut user-centric architecture Hyperledger integration multi-party threshold authorities public and private attributes re-randomization and unlinkable revelation of selective attribute revelations.

Details

International Journal of Industrial Engineering and Operations Management, vol. 5 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 5 April 2023

Xinghua Shan, Zhiqiang Zhang, Fei Ning, Shida Li and Linlin Dai

With the yearly increase of mileage and passenger volume in China's high-speed railway, the problems of traditional paper railway tickets have become increasingly prominent…

1410

Abstract

Purpose

With the yearly increase of mileage and passenger volume in China's high-speed railway, the problems of traditional paper railway tickets have become increasingly prominent, including complexity of business handling process, low efficiency of ticket inspection and high cost of usage and management. This paper aims to make extensive references to successful experiences of electronic ticket applications both domestically and internationally. The research on key technologies and system implementation of railway electronic ticket with Chinese characteristics has been carried out.

Design/methodology/approach

Research in key technologies is conducted including synchronization technique in distributed heterogeneous database system, the grid-oriented passenger service record (PSR) data storage model, efficient access to massive PSR data under high concurrency condition, the linkage between face recognition service platforms and various terminals in large scenarios, and two-factor authentication of the e-ticket identification code based on the key and the user identity information. Focusing on the key technologies and architecture the of existing ticketing system, multiple service resources are expanded and developed such as electronic ticket clusters, PSR clusters, face recognition clusters and electronic ticket identification code clusters.

Findings

The proportion of paper ticket printed has dropped to 20%, saving more than 2 billion tickets annually since the launch of the application of E-ticketing nationwide. The average time for passengers to pass through the automatic ticket gates has decreased from 3 seconds to 1.3 seconds, significantly improving the efficiency of passenger transport organization. Meanwhile, problems of paper ticket counterfeiting, reselling and loss have been generally eliminated.

Originality/value

E-ticketing has laid a technical foundation for the further development of railway passenger transport services in the direction of digitalization and intelligence.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 23 November 2020

Peng Xie, Qiang Chen, Ping Qu, Jianping Fan and Zhijun Tang

This paper aims to systematically expound the theory and development background of supply chain finance and blockchain, design a railway freight supply chain financial platform…

3570

Abstract

Purpose

This paper aims to systematically expound the theory and development background of supply chain finance and blockchain, design a railway freight supply chain financial platform based on blockchain, determine the risk management system and business support system of supply chain finance business and analyze the value generated by the combination of supply chain finance business and blockchain.

Design/methodology/approach

Investigation and research method; Prototype method; Model method; Value analysis.

Findings

The business model integrating supply chain finance and blockchain technology will bring great changes to freight industry. The development of supply chain finance is beneficial to the healthy development of the core participants of railway freight transport business and its upstream and downstream ecosystems. It links commerce, logistics, warehousing and financial services together and builds an industry-integrated ecological service platform through information technology platform and supporting system, taking data as the basis and combining information technology such as blockchain as innovative means.

Originality/value

This paper will provide important reference value for related research. This paper innovatively designs the supply chain financial platform of freight transportation industry-integrating blockchain technology and analyzes its business model, technical system, risk management and control system and value system in detail, which will provide technical support for the innovative reform of freight information technology and realize the stable and high-speed development of freight logistics informationization.

Details

Smart and Resilient Transportation, vol. 2 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 30 September 2021

Samuel Heuchert, Bhaskar Prasad Rimal, Martin Reisslein and Yong Wang

Major public cloud providers, such as AWS, Azure or Google, offer seamless experiences for infrastructure as a service (IaaS), platform as a service (PaaS) and software as a…

2386

Abstract

Purpose

Major public cloud providers, such as AWS, Azure or Google, offer seamless experiences for infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS). With the emergence of the public cloud's vast usage, administrators must be able to have a reliable method to provide the seamless experience that a public cloud offers on a smaller scale, such as a private cloud. When a smaller deployment or a private cloud is needed, OpenStack can meet the goals without increasing cost or sacrificing data control.

Design/methodology/approach

To demonstrate these enablement goals of resiliency and elasticity in IaaS and PaaS, the authors design a private distributed system cloud platform using OpenStack and its core services of Nova, Swift, Cinder, Neutron, Keystone, Horizon and Glance on a five-node deployment.

Findings

Through the demonstration of dynamically adding an IaaS node, pushing the deployment to its physical and logical limits, and eventually crashing the deployment, this paper shows how the PackStack utility facilitates the provisioning of an elastic and resilient OpenStack-based IaaS platform that can be used in production if the deployment is kept within designated boundaries.

Originality/value

The authors adopt the multinode-capable PackStack utility in favor of an all-in-one OpenStack build for a true demonstration of resiliency, elasticity and scalability in a small-scale IaaS. An all-in-one deployment is generally used for proof-of-concept deployments and is not easily scaled in production across multiple nodes. The authors demonstrate that combining PackStack with the multi-node design is suitable for smaller-scale production IaaS and PaaS deployments.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Access

Only content I have access to

Year

Content type

1 – 6 of 6